مساعد الطالب في: :

الرياضهيات
 للمف السادس الادبيا

الأستاذ:سعد العبوديا

_ تابعونا على مواقع التوامل الجتهاعيا _

困

رحلة التفوق في السادس @
(ن)

تضع شبكت الخيرية بيـن ايديكر احدى اعمالها من 0لازر مرحلة السـادس الأعدادي هذه المرحلة الماهت والمصيرية في حياة اعزاننا الطلبة وخامة الaتعففين هنهم ولمن يتعذر عليه اقتناء هذه المساعدات المدرسية في محافظاتنا العراقيت العزيزة بهدف النهوض وتطوير

الواقع التعليمي ولو بالجزء اليسير.
اذ أن شبكتنا لاتقتصر عاءا نشر الملازم المدرسية فقط أنما تقور بنشـر الدروس المرنية المجانية لاكفـا التدريسيين بالافضافت الـى هجهوعت قنواتنا التدريسية وكذلك الأرشادات والنصـانح وطـرق الدراسـة الصحيحت هذا من جهتَ. أما هـن جهت أخرى فهو كسر لشـوكت بعض المحسـوبيـن على الكـادر التدريسي 100 يرفضون نشـر ملازههمر والتعاون مع ابنانهم الطلبة لياخذوا من المال هدفا أهر ويتناسوا مصلحت الطالب والواقع التعليهي الهتدني. علماً ان كادر الشـبكت والقاينمين عليها همر هجموعت من الشـباب العراقي الواعي المثقف بالأفهافت الى تعاون بعض المدرسين الكراو كما واننا غير تابعين لأي جهت كانت رسمية او غير رسـمية انما سر تجهعنا وعملا هو خيري بحت املين من الله عز وجل ان يوفقنا لتقدير كل ها هو مالح لشعبنا و وطننا الحبيب. كـادرشبـكتّرحلتّالتفوق فبي السادس Y. 10/人/Y1

ال|

成

Counting methodsill gin（1）$^{-5}$（1）

1 湩．．．n_{2} o，ا，صَ （n，$\left.n_{2} \times n_{3} \times \ldots \times n_{k}\right)$ of（النّ
ov

$$
\text { pholel } \frac{\text { ENol }}{\text { elio }}
$$

? لHz
a $1,90=6 \times 3 \times 5=90$
议
 فِئا

$$
=350=7 \times 10 \times 5=-2 \text { 䏚 }
$$

 \｛ वै，则 चل中U

(a) $\frac{7!}{5!}$
=
(2.) $\frac{7!}{5!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{-5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=42$
(b) $\frac{110}{16}-\frac{12}{15}$

$$
\begin{aligned}
1 & =\frac{10)(9)(8)(7) 16}{6}-\frac{(9)(8)(7)(6) \frac{15}{6}}{15} \\
& =5040-3024=2016
\end{aligned}
$$

(1-a) $n!=5040$

$$
l \Rightarrow n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7
$$

$$
I n!=7!\Longrightarrow n=7
$$

-

5040	1
5040	2
2520	3
840	4
210	5
42	6
7	7
1	7

31
(b) $P_{2}^{n}=72$

P $n(n-1)=72 \rightarrow n^{2}-n-72=0$

$$
(n-9)(n+8)=0 \rightarrow n=9 \text { or } n=-8 \text { fr }
$$

(c) $P_{5}^{n}=8 \times P_{4}^{n}$
2.) $n^{\prime}(n-1)(n-2)(n-3)(n-4)=8$ n $(n-1)(n-2)(n-3)$

$$
n-4=8 \rightarrow n=8+4 \rightarrow n=12
$$

$39 / 1$
 نو ه

$7===$
$4=$ epld|s|ich $==$
$=$ =

$$
=168
$$

(6) liv وا ولَ من

$$
\begin{aligned}
& \text { ن } 1 S_{s} 1,2,3,4,5,6,7 \\
& \text { سْ } \\
& ==\leq=\Sigma \underset{\sim}{2}(ب)
\end{aligned}
$$

 s
is 1 梌 1

$4=0$ ع程
$6=\sim\left|i_{1}\right|=s=0 s$
$5=, 6 \nu_{1}=s=s$
$5 \times 6 \times 4=1, c y_{1}, 5 \therefore$

$$
\frac{10 s 5120=}{}
$$

$$
\begin{aligned}
& 4=c \text { c. } \\
& 7=0 \mid 10_{1}=s= \\
& 7=, 4 y_{1}=== \\
& 7 \times 7 \times 4=\operatorname{ses} 1,2 e s \therefore \\
& \text { Tose196 = }
\end{aligned}
$$

这有/
كم كم Cin 1,2,3, 4,5,6,7 (p)
8 ? (a) faq
(

$$
1, \frac{2}{1}, 3, \frac{4}{2}, 5,6,7
$$

(a) ds
$3^{3}=$ s
Squg

$$
\text { عد }:
$$

$$
1,2,3,4,5,6,7
$$

(b)
$4=5$ = $4 \times 1, x_{1}$

$$
\begin{aligned}
& \text { s }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ins } 196=7 \times 7 \times 4=, 1,5 y_{1}, 5
\end{aligned}
$$

$(5) / 1$
(1-1)

 P neqg
 BlW.

 Gr甲
 of 5 Grie|' 2 1:50,

$$
360=
$$

$$
\begin{aligned}
& 5=5
\end{aligned}
$$

 !
qe, $1 \times \mathrm{vc}=$

6/1
捲 (4)
(

$7 / 1$
些的河 1，2，3，4，5，6，7 با با，
 （b）

$$
\begin{equation*}
7=\Omega(0,1,2) 1,2,3,4,5,6,7 \tag{a}
\end{equation*}
$$ با

$$
3=0
$$

 2endo，，ell

300 400 ن $\frac{1}{1}, \frac{2}{2}, 3,4,5,6,7$（b）
（5）
अ1，ing

$8 / 1$
(Factorial) psod

$$
L n=n 1=n(n-1)(n-2) \cdots \times 3 \times 2 \times 1
$$

$$
L 2=2 \times 1=2
$$

$$
1!=1
$$

$$
0!=1
$$

$3 \div \frac{8!}{6!} ?$

$$
\begin{array}{r}
\frac{8!}{6!}=\frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{6 \times 5 \times 4 \times 3 \times 2 \times 1}=8 \times 7=56 \\
\left.8 \frac{3!}{4!}+2\right)=2 l i \infty
\end{array}
$$

$$
\begin{aligned}
& \frac{3!}{4!}=\frac{3 \times 2 \times 1}{4 \times 3 \times 2 \times 1}=\frac{1}{4} \\
& \frac{3 / 5!}{0!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{1}=120
\end{aligned}
$$

$3)$

$$
\begin{aligned}
& 5!=5 \times 4 \times 3 \times 2 \times 1=120 \\
& 4!=4 \times 3 \times 2 \times 1=24 \\
& L_{3}=3 \times 2 \times 1=6
\end{aligned}
$$

$3 / 1$

$$
\begin{aligned}
& 9!=9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=362880 \\
& \text { 9! } 9!=9 \times 8! \\
& 9!9!=9 \times 8 \times 1! \\
& 9!=9 \times 8 \times 7 \times 6!
\end{aligned}
$$

$$
n!=n(n-1)!
$$

$$
n!=n(n-1)(n-2)!
$$

(9)

$$
\begin{aligned}
& \frac{n!}{(n-2)!}=6 \rightarrow \frac{n(n-1)(n-2)!}{(n-2)!}=6 \\
& n(n-1)=6 \rightarrow n^{2}-n-6=0 \rightarrow(n+2)(n-3)=0 \\
& n=-2 \text { dre or } n=3
\end{aligned}
$$

$$
\rho n=\text { ens } n!=720 \text { ivis! }
$$

$$
720=1 \times 2 \times 3 \times 4 \times 5 \times 6
$$

$$
720=6!
$$

$$
\because n!=720
$$

$$
6!=n!
$$

$$
6=n
$$

9／1

$$
P_{r}^{n}=n(n-1)(n-2) \cdots(n-r+1)
$$

（1）

$$
\begin{aligned}
& =20 \times 3=60
\end{aligned}
$$

（2）$P_{2}^{5}=\underset{1}{5} \times \underset{2}{5} \times \operatorname{man}_{2}=20$
（3）$P_{1}^{5}=5$
（4）$P_{0}^{5}=1 \longrightarrow P_{0}^{n}=1$ $1=1$
（5）

$$
\begin{aligned}
& =51 .=120 \\
& \therefore P_{r}^{n}=n!\text { d } n=r
\end{aligned}
$$

 $e^{n=r}=\sim|1| 15$

$$
\because P_{3}^{6}=P_{r}^{6} \rightarrow \frac{6!}{(6-3)!}=\frac{6!}{(6-r)!} \rightarrow \frac{1}{3!}=\frac{1}{(6-r)!}
$$

10/1

$$
6-r=3 \longrightarrow r=6-3 \rightarrow r=3
$$

$p_{2} p_{k}^{q} \neq p_{k}^{n} \rightarrow r=k$

$$
\begin{aligned}
& P_{3}^{6}, P_{4}^{4}, P_{0}^{10} \Longleftarrow \\
& 31 \\
& * P_{3}^{6}=\frac{6}{1} \times \frac{5}{2} \times \frac{4}{3} \quad r=3=3 \text {, éer, s, il be } x \\
& =30 \times 4=120 \\
& * P_{4}^{4}=4!=4 \times 3 \times 2 \times 1=24 \\
& * P_{0}^{10}=1 \leftarrow\left[P_{0}^{n}=1 \text { orta } 0\right.
\end{aligned}
$$

$\xrightarrow{d 3}$

$$
\begin{aligned}
& p_{2}^{n}=42 \\
& n(n-1)=42 \text { \&igapli } \\
& n^{2}-n-42=0 \\
& (n-7)(n+6)=0
\end{aligned}
$$

$\therefore n=7$ or $n=-6$ wnay jr
(1) $p_{2}^{n}=12 \quad(n=5)$

जक्यादरीज
(2) $P_{2}^{n}=20(n=5)$
(6) $p_{2}^{n}=90 \quad(n=10)$
(3) $P_{2}^{n}=30^{\circ}(n \neq 6)$
(7) $P_{2}^{n}=110 \quad(n=11)$
(4) $P_{2}^{n}=56 \quad(n=8)$
(8) $P_{2}^{n}=132(n=12)$
(b) $P_{2}^{n}=72(n=9)$
(9) $P_{2}^{n}=156(n=13)$.

31

$$
\begin{aligned}
& P_{5}^{8}=8 \times 7 \times 6 \times 5 \times 4=6720 \\
&>r=5=1
\end{aligned}
$$

 $n<r$ ن (4) (

الनتَّبِ هها

 لا
او او

12／1

$$
\begin{aligned}
P_{3}^{6} & =6 \times 5 \times 4 \quad d_{2} \\
& =30 \times 4=120
\end{aligned}
$$

$$
\begin{aligned}
& 1,1,5216=
\end{aligned}
$$

$$
\begin{aligned}
& P_{4}^{5}=5 \times 4 \times 3 \times 2=120 \mathrm{ZJ5}
\end{aligned}
$$

$$
\begin{aligned}
& 6=\text { = } 6
\end{aligned}
$$

$$
\begin{aligned}
& \text { K,ss } 216=6 \times 6 \times 6=\text {, 1, ch, s, } \\
& \text { 基政 } 27
\end{aligned}
$$

$$
\begin{aligned}
& 8,7,6,5,4,3 \\
& \text { (a) (a) (a) } \\
& \text { (b) عِكن (b) }
\end{aligned}
$$

$12 / 1$

$$
\begin{aligned}
& \text { (a) } \frac{(n+1)!}{(n-1)!}=30 \\
& \frac{(n+1)(n)(n-1)!}{(n-1)!}=30 \rightarrow n^{2}+n-30=0 \\
& (n+6)(n-5)=0 \rightarrow n=-6 \text { fror } n=5
\end{aligned}
$$

$$
\begin{aligned}
& : \text { : }
\end{aligned}
$$

？

$$
P(7,3)=7 \cdot 6 \cdot 5=30 \cdot 7=210
$$

$$
(7)^{3}=7 \cdot 7 \cdot 7=343
$$

$3=$ كـ，

$$
\begin{align*}
& 6=-\ln 1_{1}= \tag{31}\\
& 5=\text { s } 1=1=
\end{align*}
$$

$3.6 \cdot 5=90$ ر

$$
\begin{align*}
& 7=\text {, 收 = ? ? } \tag{1}
\end{align*}
$$

$$
6.7 .7=294 \mathrm{~J}
$$

踳（e）
3：ان اك
$3.6 .5=90<6:-100_{1}=3=$
5 ：च边 $=$ ：

$12 / 1$
 (النتا解

$$
P(5,3)=5 \cdot 4 \cdot 3=60=15
$$

促

$$
P(10,3)=(10)(9)(8)=720
$$

(15) $P_{5}^{8}=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4=6720$ दें

13/1
Combinations
$C(n, r)$ st ${ }^{s}\left[\begin{array}{c}n \\ r\end{array}\right]$ st C_{r}^{n} oigot

$$
C_{C_{r}^{n}=\frac{P_{r}^{n}}{r!}=-}^{C_{i!}^{n}}
$$

 $\frac{n(n-1) \cdots(n-n+1) \text { قَ }}{r(r-1)(r-2) \cdots(3) \times 2 \times 1}$

$$
C_{r}^{n}=\frac{P_{r}^{n}}{r!}=\frac{\frac{n!}{(n-r)!}}{r!}=\frac{n!}{(r!(n-r)!}
$$

(a) C_{3}^{5} ?
$3 / C_{3}^{5}=\frac{P_{3}^{5}}{3!}=\frac{5 \times 4 \times 3}{3 \times 2 \times 1}=10$ 年

$$
\text { if } r=n \rightarrow C_{r}^{n}=1
$$

(c) C_{0}^{4}

产

$$
\begin{aligned}
& C_{0}^{4}=\frac{P_{0}^{4}}{0!}=\frac{1}{1}=1 \rightarrow \text { astor ator ata } \\
& \text { الَّ } \\
& \text { of } r=0 \rightarrow C_{r}^{n}=1
\end{aligned}
$$

(d) $C_{2}^{100}=\frac{1500 \times 99}{2}=4650$
(c) \square $C_{r}^{n}=C_{n-r}^{n}$ asstacueds التِ

141

او كنز انجّيارالمتمبلاكير/

التَتِ غيمهِم
任

التَّحِح

(w $^{\text {w }}$
(6)
 ?

$$
\begin{aligned}
& C_{6}^{8}=\text { قطا, } \\
& C_{6}^{8}=C_{2}^{8}=\frac{8^{4} \times 7}{1 \times 1}=28^{2} 20, b
\end{aligned}
$$

Generated by CamScanner trom intsig.com
$15 / 1$
ن্র।

$$
2\binom{n}{2}=\binom{n+1}{3}
$$

$2 \frac{n^{\prime}(n-1)}{2 \times 1}=\frac{(n+1)(n)(n-1)^{n}}{3 \times 2 \times 1}$效领

$$
\begin{aligned}
& 1=\frac{n+1}{6}(\text { inde },=\text { जिes }) \\
& n+1=6 \rightarrow n=6-1 \rightarrow n=5
\end{aligned}
$$

$$
Q \because x^{\prime} 0(10) 9
$$

2 e_{1},

$$
\begin{aligned}
5 & =\binom{8}{5}\binom{10}{7} \\
& =\binom{8}{3}\binom{10}{3} \\
& =\frac{8 \times 7 \times 6}{3 \times 2 \times 1} \times \frac{10 \times 9 \times 8}{3 \times 2 \times 1} \\
& =56 \times 120 \\
& =6720
\end{aligned}
$$

$16 / 1$
(a) C_{5}^{11}
(1-3)
31

$$
\begin{aligned}
C_{5}^{11} & =\frac{11 \times 10 \times 9^{3} \times 8 \times 8 \times 7}{5 \times 4 \times 3 \times 2 \times 1} \\
& =11 \times 42=462
\end{aligned}
$$

(b) $C(18,18)$
31 $C(18,18)=1$

$$
C(18,18)=1
$$

(C) $\binom{7}{0}$

31

$$
\binom{7}{0}=1
$$

(d) $\frac{1}{210}\left[P_{3}^{7}+P_{4}^{7}\right]$

31

$$
\begin{aligned}
& P_{3}^{7}=7 \times 6 \times 5=7 \times 30=210 \\
& P_{4}^{7}=7 \times 6 \times 5 \times 4=210 \times 4=840 \\
& \therefore \frac{1}{210}\left[P_{3}^{7}+P_{4}^{7}\right]=\frac{P_{3}^{7}}{210}+\frac{P_{4}^{7}}{210}=\frac{210}{210}+\frac{840}{210} \\
& =1+4=5
\end{aligned}
$$

 $20+35=55 \rightarrow n=55$ 200, $x, 5 \circ$

$$
\left.r+n-r=n \varepsilon^{\prime} \ll\binom{n}{r}^{\prime}=\binom{n}{n-r}\right\}
$$

p-
(a) $C_{6}^{10}=C_{4}^{10}$
3) की
$17 / 1$
（b）$C_{23}^{25}=\frac{P_{2}^{25}}{2!}$
 （c）－5ile

3l ${ }^{3}$ Th Le
，（e） Q $P_{3}^{7^{-}}$O

$$
C_{3}^{7^{-}}=\text {rol }^{0}
$$

نوoulinl a

$$
C_{2}^{6}=\frac{6 \times 5}{2 \times 1}=15 \text { app }
$$

－$n=r$ ú $P_{r}^{5}=P_{n}^{5}$ نणاओ $n, r \in \mathbb{N}$（h） ＂もしゃ
$(18) / 1$

Shuntion ا (10) (2)
(1) P_{3}^{10}
(2) C_{3}^{10}
(3) $\frac{10!}{3!}$

(2) C_{3}^{10}

15
(2) 6
(3) 4
(4) 2

$$
C_{2}^{6}=\frac{6 \times 5}{2}=15 \rightarrow(1) 15 \text { ? }
$$

(1) 6×6
(2) C_{2}^{6}
(3) P_{2}^{6}
(4) 16 (4) des
abōنون

(1) 68
(2) $\frac{8}{60}$
(3) 1
qued, ©2.
$\binom{68}{8} \div C_{60}^{68}=$
(4) $\frac{P_{8}^{68}}{8}$

$$
\begin{aligned}
& \binom{68}{8} \div C_{60}^{68} \\
& =\binom{68}{8} \div C_{8}^{68}=1
\end{aligned}
$$

اكِّ

نان (e)

(1) 19
(2) $\binom{9}{4}$ هن
(3) 4
(4) (4) Lo ola

Generated by CamScanner trom intsig.com

$$
\begin{aligned}
& \text { (V) Listc』(4) }
\end{aligned}
$$

19/1
(8) هِاد

$$
\begin{aligned}
& \text { dex }
\end{aligned}
$$

$\left(\begin{array}{l}56 \\ \binom{13}{6}\end{array}=\binom{8}{2}\binom{\overline{5}}{?}\right.$

$$
\begin{aligned}
& \text { ا ا ا }
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{8}{2}\binom{5}{4} \\
& =\frac{4 \times 7}{2 \times 1} \times \frac{5 \times 4 \times 3 \times 2}{4 \times 3 \times 2 \times 1}=28 \times 5=140
\end{aligned}
$$

 sLe_ , plggsاء (1) s (2)

$$
\begin{aligned}
& \text { Ta } \\
& \binom{12}{3}=\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right)\binom{3}{1} \\
& =\frac{4 \times 3}{2 \times 1} \times 8=6 \times 8=48
\end{aligned}
$$

$$
\binom{4}{2}\binom{8}{1}+\binom{4}{3}=48+4=52
$$

20/1
 نَ $\rho_{i}=\underline{p}$

$$
\begin{aligned}
& \left(\begin{array}{l}
1001 \\
\binom{10}{7}=\binom{5}{4}\binom{5}{3}
\end{array}\right. \\
& =\frac{5 \times 4 \times 3 \times 2}{4 \times 3 \times 2 \times 1} \times \frac{5 \times 4 \times 3}{3 \times 2 \times 1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2, } 215 \text { 1040 } 4 \\
& 10-5=5 \text { 3 } 3 / 2 \\
& \text { ㄱ-4 = } 3 \\
& =5 \times 10=50 \text { aje }
\end{aligned}
$$

 S

 $y=\{1,2,3,4,5\}$

(1) $C_{2}^{n+1}=21$
(2) $\binom{n}{2}=36$
(3) $p_{2}^{n+1}=42$
(4) $\frac{P_{2}^{n}}{3!}=5$
(5) $\binom{n}{4}=\binom{n}{2}$
(b) $C_{2}^{n}=45$
(7) $\binom{n}{2}=66$
(8) $\binom{n+1}{3}=2\binom{n}{2}$
(9) $\binom{n}{2}=105$
(10) $3\binom{n}{4}=14\binom{n}{2}$
(11) $P_{3}^{n}=56(n-2)$
(12) $C_{2}^{n}=15$

$21 / 1$
Bionomial Theorm

1Jhos $(x+y)^{2}=x^{2}+2 x y+y^{2}$
$2{ }^{2} 08$

$$
\left.\begin{array}{rl}
(x+y)^{3} & =C_{0}^{3} x^{3}+C_{1}^{3} x^{2} y+C_{2}^{3} x y^{2}+C_{3}^{3} y^{3} \\
& =1 x^{3}+3 x^{2} y+3 x y^{2}+1 y^{3} \\
& =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
C_{0}^{3}=1 & \left.C_{1}^{3}=3\right) C_{2}^{3}=\frac{3 x 2}{2 \times 1}=3 C_{3}^{3}=1
\end{array}\right)
$$

${ }^{3}$ Nes

$$
\begin{aligned}
& (x+y)^{4}= \\
& 4+1=5=2,3,0,4
\end{aligned}
$$

$$
\begin{aligned}
& \text { stslé yul , çin } x \text { लl si } \\
& \therefore(x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
& =C_{0}^{4} x^{4}+C_{1}^{4} x^{3} y+C_{2}^{4} x^{2} y^{2}+C_{3}^{4} x y^{3}+C_{4}^{4} y^{4}
\end{aligned}
$$

(22)/1

q 9 -
$-1 b^{\circ} \mathrm{N}$

$$
C_{5-1}^{8}=C_{4}^{8}=\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}=70
$$

$$
\begin{equation*}
C_{3-1}^{5}=C_{2}^{5}=\frac{5 \times 4}{2 \times 1}=10 \tag{4}
\end{equation*}
$$

x^{n} لكو

0 3 J n ه

Kign+1, $\frac{n}{2}+1$ و

$$
\begin{aligned}
& \text { (} \frac{n+1}{2}, \frac{n+1}{2}+1 \text { و }
\end{aligned}
$$

$$
\begin{aligned}
& P_{3}=C_{3-1}^{5} x^{5-3+1} y^{3-1}=C_{2}^{5} x^{3} y^{2}=10 x^{3} y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& (x+y)^{n}=C_{0}^{n} x^{n}+C_{1}^{n} x^{n-1} y+C_{2}^{n} x^{n-2} y^{2}+\cdots+C_{n}^{n} y^{n}
\end{aligned}
$$

23/1

$$
(x+(-y))^{n}=C_{0}^{n} x^{n}-C_{1}^{n} x^{n-1} y+C_{2}^{n} x^{n-2} y^{2}-C_{3}^{n} x^{n-3} y^{3}+\cdots+C_{n}^{n}(-1)^{n}
$$

"

$$
\text { . }{ }^{2}
$$

$$
e(x-y)^{5} \text { c) }
$$

$$
\begin{aligned}
(x-y)^{5} & =C_{0}^{5} x^{5}-C_{1}^{5} x^{4} y+C_{2}^{5} x^{3} y^{2}-C_{3}^{5} x^{2} y^{3}+C_{4}^{5} x y^{4}-C_{5}^{5} y^{5} \\
& =x^{5}-5 x^{4} y+10 x^{3} y^{2}-10 x^{2} y^{3}+5 x y^{4}-y^{5}
\end{aligned}
$$

27

$$
\begin{aligned}
(3 a+b)^{4} & =C_{0}^{4}(3 a)^{4}+C_{1}^{4}(3 a)^{3} b+C_{2}^{4}(3 a)^{2} b^{2}+C_{3}^{4}(3 a) b^{3}+C^{4} \\
& =81 a^{4}+4(27) a^{3} b+6(9) a^{2} b^{2}+4(3) a b^{3}+1 b^{4} \\
& =81 a^{4}+108 a^{3} b+54 a^{2} b^{2}+12 a b^{3}+b^{4}
\end{aligned}
$$

3) 10

31

$$
\begin{aligned}
& P_{r}=C_{r-1}^{n} x^{n-r+1} y^{r-1} \\
& P_{5}=C_{4}^{8} x^{4}(-3 y)^{4} \\
& =\frac{28 \times 7 \times 6 \times 5}{4 \times 8 \times 2 \times 1} x^{4}\left(81 y^{4}\right)=70 \times 81 x^{4} y^{4} \\
& =5670 x^{4} y^{4}
\end{aligned}
$$

年
!
(24) 1
$\left(\frac{x}{2}-3\right)^{8}$
ك

$$
\begin{aligned}
& \frac{h}{2}+1=\text { = } \\
& \frac{8}{2}+1=4+1=5 \\
& P_{r}=C_{r-1}^{n} x^{n-r+1} y^{r-1} \\
& P_{5}=C_{4}^{8}\left(\frac{x}{2}\right)^{4}(-3)^{4}=\frac{2 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} \times \frac{x^{4}}{16} \times 81 \\
& =\frac{70}{16} \times 81 x^{4}=\frac{35}{8} \times 81 x^{4}=\frac{2835}{8} x^{4}
\end{aligned}
$$

$\left(\frac{3 a}{2}-\frac{2}{3 a}\right)^{7}$

和

$$
\frac{n+1}{2}=\frac{7+1}{2}=4 \quad 6 \quad \frac{n+1}{2}+1=4+1=5
$$

4, لكا

$$
\begin{aligned}
& P_{4}=C_{3}^{7}\left(\frac{3 a}{2}\right)^{4}\left(\frac{-2}{3 a}\right)^{3} \\
&=\frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times \frac{81 a^{4}}{16} \times \frac{-8}{27 a^{3}}=\frac{35 \times 81 \times a^{4} a^{4}}{16 \times 27} a^{3} \\
& \frac{-105}{2} a \\
& P_{5}=C_{4}^{7}\left(\frac{3 a}{2}\right)^{3}\left(\frac{-2}{3 a}\right)^{4} \\
&=\frac{7 \times 6 \times 5 \times 44}{4 \times 3 \times 2 \times 1} \times \frac{\frac{27}{17} a^{3}}{\frac{6}{1}} \times \frac{16}{\frac{16}{31 a^{4}}}=\frac{70}{3 a}
\end{aligned}
$$

$25 / 1$

$$
\begin{gathered}
(2+a)^{4}+(2-a)^{4} \text { o, epet,iedige } \\
a=\sqrt{3} \text {, 1-abl siole }
\end{gathered}
$$

$$
\begin{aligned}
&(2+a)^{4}=P_{1}+P_{2}+P_{3}+P_{4}+P_{5} \\
&(2-a)^{4}=P_{1}-P_{2}+P_{3}-P_{4}+P_{5} \\
&=P_{1}+P_{1}+P_{3}+P_{3}+P_{5}+P_{5}=2 P_{1}+2 P_{3}+2 P_{5} \\
&(2+a)^{4}+(2-a)^{4}=2\left(P_{1}+P_{3}+P_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (2+a)^{4} \times \sqrt{\theta_{0}} \\
& (2+a)^{4}=C_{0}^{4} 2^{4}+C_{1}^{4} 2^{3} a+C_{2}^{4} 2^{2} a^{2}+C_{3}^{4} 2 a^{3}+C_{4}^{4} a^{4} \\
& =2^{4}+4 \times 8 a+6 \times 4 a^{2}+4 \times 2 a^{3}+a^{4} \\
& =16+32 a+24 a^{2}+8 a^{3}+a^{4} \\
& \therefore(2+a)^{4}+(2-a)^{4}=2\left(16+24 a^{2}+a^{4}\right) \\
& \rightleftarrows a=\sqrt{3} \text { レis } \\
& =2\left[16+24(\sqrt{3})^{2}+(\sqrt{3})^{4}\right] \\
& =2[16+24(3)+9] \\
& =2[16+72+9]=2 \times 97=194
\end{aligned}
$$

26 s/9 1 ed $\left(a+\frac{1}{a}\right)^{5}-\left(a-\frac{1}{a}\right)^{5}$
, 保列ep
ore $6=0,5_{1}$,es णु

$$
\left.\begin{array}{rl}
\left(\alpha+\frac{1}{a}\right)^{5} & =P_{1}+P_{2}+P_{3}+P_{4}+P_{5}+P_{6}
\end{array}=P_{1}+P_{2}+P_{3}+P_{4}+P_{5}+P_{6}\right)
$$

$$
\begin{aligned}
& \left(a+\frac{1}{a}\right)^{5}=\frac{C_{0}^{5} a^{5}}{P_{1}}+\frac{C_{1}^{5} a^{4}\left(\frac{1}{a}\right)}{P_{2}}+\frac{C_{2}^{5} a^{3}\left(\frac{1}{a}\right)^{2}}{P_{3}}+\frac{C_{3}^{5} a^{2}\left(\frac{1}{a}\right)^{3}}{P_{4}}+\frac{C_{4}^{5} a\left(\frac{1}{a}\right)^{4}+}{P_{5}}+ \\
& \quad=2\left[5 a^{4}\left(\frac{1}{a}\right)+10 a^{2}\left(\frac{1}{a}\right)^{3}+\frac{1}{a^{5}}\right] \\
& \quad=10 a^{3}+\frac{20}{a}+\frac{2}{a^{5}}
\end{aligned}
$$

ep ${ }^{p}\left(3+a^{2}\right)^{8}$ C C-bler

$$
\begin{aligned}
& P_{r}=C_{r-1}^{n} \text { (3) }\left(a^{2}\right)^{r-1}=C_{r-1}^{8}(3)^{8-r+1}\left(a^{2}\right)^{r-1} \\
& =C_{r-1}^{8}(3)^{9-r} a^{2 r-2} \rightarrow a^{8}=a^{2 r-2} \rightarrow 2 r-2=8 \\
& \therefore 2 r=10 \rightarrow r=5 \text { w, بنام } \\
& \therefore P_{5}=C_{5-1}^{8}(3)^{9-5}\left(a^{2}\right)^{5-1}=C_{4}^{8}(3)^{4}\left(a^{2}\right)^{4} \\
& =\frac{26 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} \times 81 \times a^{8}=5670 a^{8} \text {, } 12 e^{3} \\
& =5670 \text {, } 9^{8} \text {, ver }
\end{aligned}
$$

27/1

$$
\begin{aligned}
& P_{r}=C_{r-1}^{n}\left(x^{2}\right)^{n-r+1}\left(\frac{-1}{x}\right)^{r-1} \\
&=C_{r-1}^{15}\left(x^{2}\right)^{15-r+1}(-1)^{r-1}\left(x^{-1}\right)^{r-1} \frac{-1}{x}=-1 x^{-1} \\
&=C_{r-1}^{15} x^{32-2 r}(-1)^{r-1}(x)^{-r+1} \\
&=C_{r-1}^{15} x^{33-3 r}(-1)^{r-1} \quad=x^{32-2 r} x^{-r+1} \\
&=x^{32-2 r-r+1}=x^{33-3 r} \\
&=x^{33-3 r} \xrightarrow{\rightarrow} 33-3 r=0 \rightarrow 33=3 r \rightarrow r=11 \\
&
\end{aligned}
$$

वالم

$$
\begin{aligned}
& J P_{11}=C_{10}^{15}\left(x^{2}\right)^{15-11+1}(-1)^{11-1}(x)^{-11+1} \\
& =C_{10}^{15}\left(x^{2}\right)^{5}(-1)^{10}(x)^{-10} x^{10}(1)(x)^{-10} \\
& =C_{10}^{15}=C_{5}^{15} \\
& =x^{10-10}=x^{0}=1 \\
& =\frac{15 \times 11^{7} \times 13+12^{3}+11}{5 \times 4 \times 3 \times 1 \times 1}=3003 \text {, } \times \times 10314,400 \\
& (101)^{3}{ }^{3} \text { 101150 } \\
& (101)^{3}=(1+100)^{3}=C_{0}^{3}(1)^{3}+C_{1}^{3}(1)^{2}(100)+C_{2}^{3}(1)(100)^{2}+{ }^{3}{ }^{3} 1 \\
& =1+3(100)+3(10000)+1000000 \quad C_{3}^{3}(100)^{3} \\
& =1+300+30000+1000000 \\
& =1030301
\end{aligned}
$$

(28)/1
(a) $(3 a-b)^{4}$

$$
(1-4)(2+2
$$

(1)

31

$$
\begin{aligned}
(3 a-b)^{4} & =C_{0}^{4}(3 a)^{4}-C_{1}^{4}(3 a)^{3}(b)+C_{2}^{4}(3 a)^{2}(b)^{2}-C_{3}^{4}(3 a) b^{3}+ \\
& =81 a^{4}-4(27) a^{3} b+6(9) a^{2} b^{2}-4(3 a) b^{3}+b_{4}^{4}(b)^{4} \\
& =81 a^{4}-108 a^{3} b+54 a^{2} b^{2}-12 a b^{3}+b^{4}
\end{aligned}
$$

(b) $\left(3 x^{2}+2 y\right)^{3}$

5

$$
\begin{aligned}
& \text { (b) } \begin{aligned}
&\left(3 x^{2}+2 y\right)^{3} \\
&\left(3 x^{2}+2 y\right)^{3}=\left(\left(3 x^{2}\right)^{3}+C_{1}^{3}\left(3 x^{2}\right)^{2}(2 y)+C_{2}^{3}\left(3 x^{2}\right)(2 y)^{2}+C_{3}^{3}(2 y)^{3}\right. \\
&=27 x^{6}+3\left(9 x^{4}\right)(2 y)+3\left(2 x^{2}\right)\left(4 y^{2}\right)+\left(8 y^{3}\right) \\
&=27 x^{6}+54 x^{4} y+36 x^{2} y^{2}+8 y^{3}
\end{aligned}
\end{aligned}
$$

$$
\text { (c) }\left(2 x-\frac{1}{2 x}\right)^{6}
$$

$$
=(2 x)^{6}-C_{1}^{6}(2 x)^{5}\left(\frac{1}{2 x}\right)+C_{2}^{6}(2 x)^{4}\left(\frac{1}{2 x}\right)^{2}-C_{3}^{6}(2 x)^{3}\left(\frac{1}{2 x}\right)^{3}+C_{4}^{6}(2 x)^{2}\left(\frac{1}{2 x}\right)^{4}
$$

$$
-C_{5}^{6}(2 x)\left(\frac{1}{2 x}\right)^{5}+C_{6}^{6}\left(\frac{1}{2 x}\right)^{\frac{1}{5}}
$$

$$
=64 x^{6}-6(32) \frac{x^{5}}{2 x}+15(16) x^{4} \frac{1}{4 x^{2}}-20(8) x^{3} \frac{1}{8 x^{3}}+15(4) x^{2} \frac{1}{16 x^{4}}
$$

$$
-6(2 x) \frac{1}{32 x^{5}}+\frac{1}{64 x^{6}}
$$

$$
=64 x^{6}-96 x^{4}+60 x^{2}-20+\frac{15}{4 x^{2}}-\frac{3}{8 x^{4}}+\frac{1}{64 x^{6}}
$$

$$
\begin{aligned}
& 31 /\left(X-3 y^{2}\right)^{7} \\
& P_{r}=C_{r-1}^{n} X^{n-r+1}\left(-3 y^{2}\right)^{r-1} \\
& P_{B}=C_{2}^{7} X^{7-3+1}\left(-3 y^{2}\right)^{3-1}=C_{2}^{7} X^{5}\left(-3 y^{2}\right)^{2}=21 x^{5}(9) y^{4} \\
& =189 x^{5} y^{4}
\end{aligned}
$$

(29)/1

$$
\begin{aligned}
P_{r} & =C_{r-1}^{n}\left(\frac{x^{2}}{2}\right)^{n-r+1}\left(\frac{x}{3}\right)^{r-1} \\
P_{6} & =C_{5}^{8}\left(\frac{x^{2}}{2}\right)^{8-6+1}\left(\frac{x}{3}\right)^{6-1}=C_{5}^{8}\left(\frac{x^{2}}{2}\right)^{3}\left(\frac{x}{3}\right)^{5} \\
& \left.=C_{3}^{8} \frac{x^{6}}{8} \times \frac{x^{5}}{243} \quad C_{5}^{8}=C_{3}^{8} \frac{x^{2}-1 /=51}{2}\right)^{\frac{x^{2}}{2}}=\frac{\left(x^{3}\right)^{3}}{2^{3}}=\frac{x^{6}}{8} \\
& =56 \times \frac{x^{11}}{8 \times 243}=\frac{7}{243} x^{11}
\end{aligned}
$$

$$
\left(a-\frac{2}{a}\right)^{12}
$$

$$
\begin{aligned}
&=\frac{12}{2}+1=6+1=7 \\
& P_{r}=C_{r-1}^{n} x^{n-r+1} y^{r-1} \rho(8) \mid, 21 \\
& P_{y}=C_{6}^{12} x^{12-7+1} y^{7-1}=C_{6}^{12} x^{6} y^{6} \\
&=C_{6}^{12}(a)^{6}\left(\frac{2}{a}\right)^{6}=\frac{12 \times 11 \times 10^{2} \times 9^{3} \times 8^{4} \times 7}{6 \times 5 \times 4 \times 1 \times 3 \times 2 \times 1} \not A^{6} \times \frac{2^{6}}{a^{6}} \\
&=59136
\end{aligned}
$$

301
$(2 a-1)^{7} 5$ كس ك

$\frac{n+1}{a}+1=4+1=5$

$$
\begin{aligned}
P_{4} & =C_{3}^{7}(2 a)^{4}(-1)^{3} \\
& =35\left(16 a^{4}\right)(-1)=-560 a^{4} \\
P_{5} & =C_{4}^{7}(2 a)^{3}(-1)^{4}=35\left(8 a^{3}\right)(1)=280 a^{3}
\end{aligned}
$$

- $\left(1+x^{2}\right)^{6}$ U

(r)

$$
\begin{aligned}
& P_{r}=C_{r-1}^{6}(1)^{6-r+1}\left(x^{2}\right)^{r-1} \\
& =C_{r-1}^{6}(1)^{7-r}(x)^{2 r-2} \rightarrow x^{4}=x^{2 r-2} \rightarrow 4=2 r-2 \\
& \therefore 2 r=4+2 \rightarrow 2 r=6 \rightarrow r=3 \rightarrow 2 \\
& P_{3}=C_{2}^{6}(1)^{6-3+1}\left(x^{2}\right)^{3-1} \\
& =C_{2}^{6}(1)^{4}\left(x^{2}\right)^{2}=\frac{6 \times 5}{2 \times 1} x^{4}=15 x^{4} \text { व'y, } 1
\end{aligned}
$$

$31 / 1$

$$
\left(x^{3}+\frac{2}{x^{2}}\right)^{9} \text { UQain } x^{2} \text { ل冂aer ç }
$$

x^{2} اكِّ

135
$\therefore \gamma=6 \rightarrow$ 的
$P_{6}=C_{5}^{9} x^{32-30}(2)^{5}=\frac{9 \times 8 \times 7 \times 6 \times 5}{5 \times 4 \times 3 \times 2 \times 1} x^{2}(32)=\frac{4032 x^{2}}{403200 x^{2} j 6}$
 x（2．）

$$
\begin{aligned}
P_{r} & =C_{r-1}^{n}\left(x^{2}\right)^{n-r+1}\left(\frac{2}{x^{3}}\right)^{r-1} \\
& =C_{r-1}^{10}\left(x^{2}\right)^{11-r}(2)^{r-1}\left(x^{-3}\right)^{r-1} \\
& =C_{r-1}^{10}(x)^{22-2 r}(2)^{r-1}(x)^{-3 r+3}
\end{aligned}
$$

n
有 ＂発 . $\mathrm{Y4.01.71A}^{7}$

$$
\begin{aligned}
& P_{r}=C_{Y-1}^{9}\left(x^{3}\right)^{9-r+1}\left(\frac{2}{x^{2}}\right)^{r-1} \\
& =C_{r-1}^{9}(x)^{3(10-Y)}\left(\frac{2}{x^{2}}\right)^{r-1}=C_{r-1}^{9}(x)^{30-3 r}(2)^{r-1}\left[(x)^{-z}\right]^{r-1} \\
& =C_{r-1}^{9}(x)^{30-3 r}(2)^{r-1}(x)^{-2 r+2} \\
& =C_{r-1}^{9} x^{30-3 r-2 r+2}(2)^{r-1}=C_{r-1}^{9} X^{32-5 r}(2)^{r-1} \\
& \therefore X^{2}=X^{32-5 Y} \rightarrow 2=32-5 Y \rightarrow 5 Y=32-2 \rightarrow 5 Y=30
\end{aligned}
$$

$32 / 1$

$$
\begin{aligned}
& =C_{r-1}^{10} x^{2} \\
& x^{22-2 \gamma-3 \gamma+3}{ }^{6}(2)^{\gamma-1} \\
& \text { (2) v-1 veperofés } \\
& =\left(\begin{array}{c}
10 \\
r_{-1}^{25-5 r} x^{2} \\
0 \\
25-5 \gamma
\end{array}(2)^{r-1}\right. \\
& \therefore x=x^{25-5 Y} \rightarrow 25-5 r=0 \rightarrow 5 r=25 \rightarrow Y=5 \\
& \longleftarrow 5 \text { विय } \\
& P_{5}=C_{4}^{10} x^{25-25}(2)^{4}=C_{4}^{10} x^{0}(16)=16 C_{4}^{10} \\
& \begin{array}{r}
=16 \times \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}=16 \times 210=3360 \\
x=3131
\end{array} \\
& x \text { 넜心, }
\end{aligned}
$$

831

$$
\begin{aligned}
(99)^{4}= & (100-1)^{4} \\
= & C_{0}^{4}(100)^{4}-C_{1}^{4}(100)^{3}(1)+C_{2}^{4}(100)^{2}(1)^{2} \\
& -C_{3}^{4}(100)(1)^{3}+C_{4}^{4}(1)^{4} \\
= & (100)^{4}-4(100)^{3}+6(100)^{2}-4(100)+1 \\
= & 100000000-4000000+60000-400+1 \\
= & 96059601
\end{aligned}
$$

33

$$
\begin{aligned}
(100+2)^{4} & =\frac{C_{0}^{4}(100)^{4}}{P_{1}}+\frac{\left(C_{1}^{4}(100)^{3}(2)+C_{1}^{4}(100)^{2}(2)^{2}+C_{3}^{4}(100)(2)\right.}{P_{2}+\frac{C_{4}^{4}(2)^{4}}{P_{3}}} \\
(10 \tau)^{4}-(98)^{4} & =2\left[C_{1}^{4}(100)^{3}(2)+C_{3}^{4}(100)(2)^{3}\right]
\end{aligned}
$$

$$
\begin{equation*}
(107)^{4}-(98)^{4}=2\left[C_{1}^{4}(100)^{3}(2)+C_{3}^{4}(100)(2)^{3}\right] \tag{5}
\end{equation*}
$$

$$
=2[8(1000000)+32(100)]
$$

31
 10 原

$$
\begin{aligned}
(2+\sqrt{3})^{7}= & C_{0}^{7}(2)^{7}+C_{1}^{7}(2)^{6}(\sqrt{3})+C_{2}^{7}(2)^{5}(\sqrt{3})^{2}+C_{3}^{7}(2)^{4}(\sqrt{3})^{3} \\
& +C_{4}^{7}(2)^{3}(\sqrt{3})^{4}+C_{5}^{7}(2)^{2}(\sqrt{3})^{5}+C_{6}^{7}(2)(\sqrt{3})^{6}+C_{7}^{7}(\sqrt{3})^{7} \\
(2+\sqrt{3})^{7}+(2-\sqrt{3})= & 2\left[(2)^{7}+C_{2}^{7}(32)(3)+C_{4}^{7}(8)(9)+C_{6}^{7}(2)(27)\right] \\
= & 2[128+2016+2520+378]=2[5092] \\
& =10184
\end{aligned}
$$

veneratea dy camscanner trom intig.com

$$
\begin{aligned}
& (102)^{4}-(98)^{4}=(100+2)^{4}-(100-2)^{4}
\end{aligned}
$$

$$
\begin{aligned}
& (100+2)^{4} \text { (5) }
\end{aligned}
$$

الرياضيـات

السادس الادبي

Limits الغابات

اعداد الاستاذ

سـعـد العبودي

تطلب حصراً من
ملَنبَة الفتَغ الجايـِ

1/2

2 bed
Limits "الذا
And Contimuity 9
Limits cyled

Jor ا
ex(1)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} x+1=0+1=1 \\
& \lim _{x \rightarrow 1} x+1=1+1=2
\end{aligned}
$$

$$
\lim _{x \rightarrow-2} x+1=-2+1=-1
$$

[范

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow a^{-}} f(x)=L_{2} \quad \lim _{x \rightarrow a^{+}} f(x)=L_{1} \text { जाका s. } \\
& L_{1}=L_{2} \quad \text { c. }
\end{aligned}
$$

$2 / 2$

$$
\frac{(P)}{931,5 \text { encos }}
$$

$$
\sigma=\delta
$$

$$
5=\text { كs }
$$

$$
4=\hat{c}
$$

1. extdrgqu
arg in of p

$7=6 x_{1}$ जै/ر

$$
\text { 2900, 出 } \frac{83}{\mathscr{P}}
$$

$7=$ ع

$7=$ كر, $7=$
$7 \times 7 \times 7 \times 7=1616$ er,

$$
\begin{aligned}
& \sigma=\text { s sur } \\
& 6=\text { जैजि } \\
& 6=\text { كدر } 6 \\
& =\approx \text { ع عدر } \therefore \\
& 6 \times 6 \times 6 \times 6=1296
\end{aligned}
$$

$2 / 2$

$$
\begin{aligned}
& c \in R \quad \lim _{x \rightarrow a} c=c \\
& \sqrt{2}=\sqrt{2} \\
& \begin{array}{ll}
1 & \text { (b) } \lim _{x \rightarrow 0} 3=3 \\
-\frac{1}{2}=\frac{1}{2} & \text { (d) } \lim _{x \rightarrow 0} 3 a+b=3 a+b \\
x=-2 & \text { (b) } \lim _{x \rightarrow \sqrt{3}} x=\sqrt{3}
\end{array}
\end{aligned}
$$

(a)) $\lim _{x \rightarrow 1} \sqrt{2}=\sqrt{2}$
(c) $\lim _{x \rightarrow-1} \frac{1}{2}=\frac{1}{2}$
(a) $\lim _{x \rightarrow-2} x=-2$
(c) $\lim _{x \rightarrow \frac{1}{4}} x=\frac{1}{4}$
(a)

$$
\begin{aligned}
\lim _{x \rightarrow 1}(x+4) & =\lim _{x \rightarrow 1} x+\lim _{x \rightarrow 1} 4 \\
& =1+4=5
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{x \rightarrow-5}(x-3) & =\lim _{x \rightarrow-5} x-\lim _{x \rightarrow-5} 3 \\
& =-5-3=-8
\end{aligned}
$$

$$
\begin{aligned}
& \text { +y9+01-i!n7 } \\
& \hline
\end{aligned}
$$

$$
\lim _{x \rightarrow a} c f(x)=c^{x} \lim _{x \rightarrow a} f(x), c=s
$$

(a) $\lim _{x \rightarrow 2} 4 x=4 \lim _{x \rightarrow 2} x=4(2)=8$

$$
\frac{\zeta}{\varepsilon}=\frac{\gamma+\gamma}{\zeta+\eta}=
$$

betos

$$
\frac{(x) b \text { wiy }}{(x) \delta \text { bi! } \gamma}=\frac{(x) b}{(x) \delta} \operatorname{lix}^{b \leftarrow x}
$$

18^{m}.

सें:

$\longleftarrow a \neq(x) b_{b m i \gamma}^{b \leftarrow x}$

$$
L \sigma^{-}=(\varepsilon-)=x \sum_{\varepsilon}^{\varepsilon-\leftarrow-x}
$$

$$
(x) b^{b<x} m \cdot(x) t \cdot \begin{aligned}
& b \leftarrow x \\
& n!\mid
\end{aligned}=\left[(x) b_{0} \cdot(x) \neq\right]^{b \leftarrow x}
$$

$$
b<x \quad b<x
$$

$$
(x) \int_{0}^{0<x} \backslash \infty
$$

$$
\begin{aligned}
& F-=(\sigma-) \frac{2}{1}=x^{2-c-x} \frac{3}{1}=x \frac{2}{1} \operatorname{l-c-x} \bar{\gamma}(p) \\
& 0=(0) \varepsilon-=x^{0} \text { min } \gamma \varepsilon-=x \varepsilon-\operatorname{los} \mid \gamma(9)
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon=[\sigma+\tau] \tau=
\end{aligned}
$$

$(4) / 2$
(b) $\lim _{x \rightarrow 2} \frac{3}{x+4}=\frac{\lim _{x \rightarrow 2} 3}{\lim _{x \rightarrow 2} x+4}=\frac{3}{\lim _{x \rightarrow 2} x+\lim _{x \rightarrow 2} 4}=\frac{3}{2+4}=\frac{3}{6}=\frac{1}{2}$
,
ن ان

$$
\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}, n \mathcal{q}_{2}+\infty, n>1
$$

(a) Find $\lim _{x \rightarrow 1} \sqrt{4 x+5}, x \geqslant \frac{-5}{4}$

$$
\begin{aligned}
=\sqrt{\lim _{x \rightarrow 1}(4 x+5)} & =\sqrt{\lim _{x \rightarrow 1} 4 x+\lim _{x \rightarrow 1} 5} \\
& =\sqrt{4(1)+5}=\sqrt{9}=3
\end{aligned}
$$

(b) Find $\lim _{x \rightarrow-2} f(x), f(x)=\sqrt{x+2}, x \geqslant-2$

31

$$
\begin{aligned}
\lim _{x \rightarrow-2} f(x) & =\lim _{x \rightarrow-2} \sqrt{x+2}=\sqrt{\lim _{x \rightarrow-2}(x+2)} \\
& =\sqrt{\lim _{x \rightarrow-2} x+\lim _{x \rightarrow-2} 2}=\sqrt{-2+2}=\sqrt{0}=0
\end{aligned}
$$

(c) Find $\lim _{x \rightarrow 2} \sqrt{x^{2}-1}-2 ? x \geqslant 1$

31

$$
\begin{aligned}
\lim _{x \rightarrow 2} \sqrt{x^{2}-1}-2 & =\lim _{x \rightarrow 2} \sqrt{x^{2}-1}-\lim _{x \rightarrow 2} 2 \\
& =\sqrt{\lim _{x \rightarrow 2}\left(x^{2}-1\right)}-2 \\
& =\sqrt{(2)^{2}-1}-2=\sqrt{3}-2
\end{aligned}
$$

5/2
كِكن هل الها

$$
\lim _{x \rightarrow 0} x^{2}+1=(0)^{2}+1=1
$$

$f(x)=x^{2}+2 x-160(\overline{0})$ (1)

(1) $\lim _{x \rightarrow 0} x^{2}+2 x-1$

31

$$
\lim _{x \rightarrow 0} x^{2}+2 x-1=(0)^{2}-2(0)-1=-1
$$

(2) $\lim _{x \rightarrow 2} \frac{x+1}{x-1}$
-5 $-x x-1$ < $2-1=1 \neq 0$
ano

$$
=\frac{2+1}{2-1}=\frac{3}{1}=3
$$

(3).

31

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \sqrt{x-2}, x \geqslant 2 \\
& \lim _{x \rightarrow 4} \sqrt{x-2}=\sqrt{4-2}=\sqrt{2}
\end{aligned}
$$

(4) $\lim _{x \rightarrow-3}\left(x^{3}+2 x\right)$

3

$$
\begin{aligned}
\lim _{x \rightarrow-3}^{x \rightarrow-3}\left(x^{3}+2 x\right) & =(-3)^{3}+2(-3) \\
& =-27-6 \\
& =-33
\end{aligned}
$$

$$
\begin{aligned}
& (-a)^{5,2}=-(a)^{5} \\
& (-a)^{2}=+(a)^{2}
\end{aligned}
$$

cactur
.

- $\vee 9.01+$ "̈vos?

6/2

) (2)
vequ) (3)

$$
\left.\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1} \quad \begin{array}{r}
x+1 \\
-1+1=0 \\
x=1
\end{array}\right)
$$

$$
=\lim _{x \rightarrow-1} \frac{(x-1)(x+1)}{x+1}
$$

$$
=\lim _{x \rightarrow-1} x-1=-1-1=-2
$$

屈
ex/

$$
\begin{align*}
& x^{3}-x=x\left(x^{2}-1\right) \tag{1}\\
& 3 x^{2}-12=3\left(x^{2}-4\right) \\
& 2 x^{4}-16 x=2 x\left(x^{3}-8\right) \\
& x^{2}-y^{2}=(x-y)(x+y) \\
& x^{2}-16=(x-4)(x+4) \\
& x^{2}-5=(x-\sqrt{5})(x+\sqrt{5}) \\
& x-4=(\sqrt{x}-2)(\sqrt{x}+2) \\
& x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right) \\
& 3 x^{2}-27=3\left(x^{2}-9\right)=3(x-3)(x+3)
\end{align*}
$$

$7 / 2$
（ S＇כ久（3）
ex $x^{2}+4<x^{4}+166 x+1 \cdot 2 x^{2}+4$
ex

$$
\begin{aligned}
& x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \\
& x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \\
& x^{3}-8=(x-2)\left(x^{2}+2 x+4\right) \\
& x^{3}+27=(x+3)\left(x^{2}-3 x+9\right) \\
& x^{3}-64=(x-4)\left(x^{2}+4 x+16\right) \\
& x^{3}+125=(x+5)\left(x^{2}-5 x+25\right) \\
& 2 x^{3}+16=2\left(x^{3}+8\right)=2(x+2)\left(x^{2}-2 x+4\right) \\
& x^{4}-27 x=x\left(x^{3}-27\right)=x(x-3)\left(x^{2}+3 x+9\right)
\end{aligned}
$$

م حُّوي كمبين
ex

$$
\begin{align*}
& x^{2}-5 x+6 \tag{4}\\
& \frac{(x-3)(x-2)}{\frac{-2 x}{-5 x}}
\end{align*}
$$

بَ拱毕官
ex
مربحكاهل (3-eرود)
｜الأستاذ سيسد الحبّودي ！！عدادية الجزيرة －Ya．01． FIAT
$8 / 2$
3) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$

$$
=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3} x+3=3+3=6
$$

ex
31

$$
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4} \quad \begin{aligned}
& =(2)^{x^{2}-4} \\
& =0
\end{aligned}
$$

$$
\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-6)}
$$

$$
\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{2}
$$

$$
\begin{gathered}
=\lim _{x \rightarrow 2} \frac{x^{2}+2 x+4}{x+2}=\frac{(2)^{2}+2(2)+4}{2+2} \\
-4+4+4
\end{gathered}
$$

ex

$$
=\frac{4+4+4}{4}=\frac{12}{4}=3
$$

5

$$
\lim _{x \rightarrow-2} \frac{x^{2}-4 x-12}{x+2}
$$

$$
\lim _{x \rightarrow-2} \frac{(x-6)(x+2)}{x+2}=\lim _{x \rightarrow-2}(x-6)
$$

$$
=-2-6=-8
$$

(1) $\lim _{x \rightarrow 0} \frac{x^{2}-x^{2}}{x}$
(5) $\lim _{x \rightarrow 3} \frac{2 x^{3}-54}{x-3}$
(2) $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}$
(6) $\lim _{x \rightarrow-1} \frac{2 x^{2}-2 x-4}{(x+1)}$
(3) $\lim _{x \rightarrow 5} \frac{x^{2}-7 x+10}{x-5}$
(7) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{\sqrt{x}-1}$
(4) $\lim _{x \rightarrow-2} \frac{x^{4}+8 x}{x+2}$. V9.01.vin. 9
$9 / 2$

$$
\text { / } \mu=\text { 偪 }
$$

Gْ

$$
=\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3} \times \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2}
$$

$$
(\sqrt{x+1}-2)(\sqrt{x+1}+2)
$$

$$
=\lim _{x \rightarrow 3} \frac{(x+1-4)}{(x-3)(\sqrt{x+1}+2}
$$

$$
(x+1)-4
$$

$$
=\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(\sqrt{x+1}+2}=\frac{\lim _{x \rightarrow 3} 1}{\lim \sqrt{x+1}+2}
$$

$$
=\frac{1}{\sqrt{\lim _{x \rightarrow 3} x+\lim _{x \rightarrow 3} 1}+2}=\frac{1}{\sqrt{3+1}+2}=\frac{1}{2+2}=\frac{1}{4}
$$

$x>a$ ن (1)
 = 20.900 الفا
啀

!
049.010 F1A7
$(10) / 2$

$$
\begin{aligned}
\lim _{x \rightarrow 2} f(x) & =\lim _{x \rightarrow 2^{-}}(1-x) \\
& =\lim _{x \rightarrow 2^{-}} 1-\lim _{x \rightarrow 2^{-}} x=1-2=-1=L_{2}
\end{aligned}
$$

ars $\lim _{x \rightarrow 2} f(x) \leftarrow L_{1} \neq L_{2} \because$
e. a elon

$$
\operatorname{Lim}_{x \rightarrow 1^{-}}(2 x+a)=\operatorname{Lim}_{x \rightarrow 1^{-}}\left(x^{2}+2\right)
$$

$$
2(1)+a=(1)^{2}+2
$$

Poolimf $f(x)=\dot{\sim}, f(x)=\left\{\begin{array}{ll}x^{2}+a & x>1 \\ b-2 x & x \leqslant 1\end{array}\right.$; 160 hs $a, b \in R$ ییی
转

!
\circ V9.01. YMA

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2^{+}}(x+1) \\
& =2+1=3=L_{1}
\end{aligned}
$$

$(11) / 2$

$$
\begin{aligned}
& \because \lim _{x \rightarrow-1} f(x)=5 \\
& \therefore \lim _{x \rightarrow-1}(b-2 x)=5 \\
& \therefore b-2(-1)=5 \rightarrow b+2=5 \rightarrow b=3
\end{aligned}
$$

, $\lim \ln f(x)=\because$

$$
\operatorname{Lim}_{x \rightarrow 1}\left(x^{2}+a\right)=\lim _{x \rightarrow 1}(b-2 x)
$$

$$
\begin{aligned}
& (1)^{2}+a=3-2(1) \rightarrow 1+a=3-2 \rightarrow 1+a=1 \\
& \therefore a=0
\end{aligned}
$$

$$
\therefore a=0
$$

$$
\begin{aligned}
& \frac{\lim _{x \rightarrow 1} x^{2}+\lim _{x \rightarrow 1} 3 x-\lim _{x \rightarrow 1} 1}{\lim _{x \rightarrow 1} x+\lim _{x \rightarrow 1} 2}=2 a+3 \\
& \frac{(1)^{2}+3(1)-1}{1+2}=\frac{1+3-1}{3}=\frac{3}{3}=1 \Rightarrow 2 a+3=1 \\
& 2 a=1-3 \rightarrow 2 a=-2 \rightarrow 10=-1
\end{aligned}
$$

! إدادية المزيرة
$(12) / 2$
عّاربن (2-1 (2)
(1) $\lim _{x \rightarrow-1}\left(x^{3}+2 x+3\right)$
(1)

$$
\begin{aligned}
& =\lim _{x \rightarrow-1} x^{3}+\lim _{x \rightarrow-1} 2 x+\lim _{x \rightarrow-1} 3 \\
& =(-1)^{3}+2(-1)+3 \\
& =-1-2+3=-3+3=0
\end{aligned}
$$

$$
\text { Su' áns all } 1
$$

(2) $\lim _{x \rightarrow 0} \frac{x^{4}+1}{x+1}$
$0 \neq 1=0+1=x+1$ pإ
3

$$
\frac{\lim _{x \rightarrow 0} x^{4}+\lim _{x \rightarrow \infty} 1}{\lim _{x \rightarrow 0} x+\lim _{x \rightarrow 0} 1}=\frac{(0)^{4}+1}{0+1}=\frac{1}{1}=1
$$

(3) $\lim _{x \rightarrow-2} \frac{x^{2}+2 x}{x^{2}-x-6}$

क-2 $x^{2}-x-6=(-2)^{2}-(-2)-6$
$=\lim _{x \rightarrow-2} \frac{x(x+2)}{(x-3)(x+2)}$
$=4+2-6=4-4=$
2 रैos $\mathrm{m}=5661$
$=\lim _{x \rightarrow-2} \frac{x}{x-3}=\frac{\lim _{x \rightarrow-2} x}{\lim _{x \rightarrow-2}(x)-\lim _{x \rightarrow-2}}$
(4) $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}$

131
$=\lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x-1}$
$\lim _{x \rightarrow 1} \frac{(x-1)(x+1)\left(x^{2}+1\right)}{x-1}$
2?902

Generated by CamScanner trom intsig.com

13/2

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{(x+1)\left(x^{2}+1\right)}{1}=\lim _{x \rightarrow 1}(x+1) \lim _{x \rightarrow 1}\left(x^{2}+1\right) \\
& =\left[\lim _{x \rightarrow 1} x+\left(\lim _{x \rightarrow 1} 1\right]\left[\lim _{x \rightarrow 1} x^{2}+\lim _{x \rightarrow 1} 1\right]\right. \\
& =[1+1]\left[(1)^{2}+1\right]=[2][2]=4 \\
& \text { (5) } \lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}+2 x-15} \\
& x^{2}+2 x-15 \\
& (3)^{2}+2(3)-15=9+6-15 \\
& =\lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{(x+5)(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{x^{2}+3 x+9}{x+5}=\frac{\lim _{\lim _{x}} x^{2}+\lim _{x \rightarrow 3} 3 x+\lim 9}{\lim _{x \rightarrow 3} x+\lim _{x \rightarrow 3} 5} \\
& =\frac{(3)^{2}+3(3)+9}{3+5}=\frac{9+9+9}{8}=\frac{27}{8} \\
& \text { (6) } \lim _{x \rightarrow \sqrt{2}} \frac{x^{2}-2}{x-\sqrt{2}} \\
& \begin{aligned}
=x-\sqrt{2} \\
\sqrt{2}-\sqrt{2}=0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \sqrt{2}} \frac{(x-\sqrt{2})(x+\sqrt{2})}{x-\sqrt{2}} \\
& =\lim _{x \rightarrow \sqrt{2}}(x+\sqrt{2})=\sqrt{2}+\sqrt{2}=2 \sqrt{2} \\
& \text { (7) } \lim _{x \rightarrow 1} \frac{x^{3}+7 x^{2}-8 x}{3 x^{2}-3} \\
& \begin{array}{l}
3 x^{2}-3 \text { F } 6 \mid \\
3(1)^{2}-3=3-3=0 \\
2-6=20
\end{array} \\
& =\lim _{x \rightarrow 1} \frac{x\left(x^{2}+7 x-8\right)}{3\left(x^{2}-1\right)} \\
& =\lim _{x \rightarrow 1} \frac{x(x+8)(x-1)}{3(x-\sqrt{5})(x+1)}=\lim _{x \rightarrow 1} \frac{x(x+8)}{3(x+1)}
\end{aligned}
$$

$(14) / 2$

$$
=\frac{1(1+8)}{3(1+1)}=\frac{1(9)}{3(2)}=\frac{9}{6}=\frac{3}{2}
$$

(8) $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{4}-16}$

$$
=\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{\left(x^{2}-4\right)\left(x^{2}+4\right)}
$$

$$
\begin{aligned}
& \left(x^{4}-16\right) \text { जिb } \\
& (-2)^{4}-16 \\
& 16-16=0
\end{aligned}
$$

$$
16-16=0
$$

噱

$$
\begin{aligned}
& =\lim _{x \rightarrow-2} \frac{x^{2}-2 x+4}{(x-2)\left(x^{2}+4\right)}=\frac{(-2)^{2}-2(-2)+4}{(-2-2)\left((-2)^{2}+4\right)} \\
& =\frac{4+4+4}{(-4)(8)}=\frac{12}{-32}=\frac{-3}{8}
\end{aligned}
$$

(9)

31

$$
\begin{aligned}
& \sqrt{x}-1 \quad|\vec{b}| \\
& =\sqrt{2}-1=1-1=0
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{\sqrt{x}-1} \\
& =\lim _{x \rightarrow 1} \frac{(\sqrt{x}-1)(\sqrt{x}+1)(x+1)}{\sqrt{x}-1} \\
& =\lim _{x \rightarrow 1}(\sqrt{x}+1)(x+1) \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

$25 / 2$
(10)

231

$$
\lim _{x \rightarrow 1} \frac{x^{2}-9}{\sqrt{3 x}-3}
$$

$$
\begin{aligned}
& \sqrt{3 x}-3 \text { (Gb) } \\
= & \sqrt{3}-3 \neq 0
\end{aligned}
$$

$$
\frac{\operatorname{Lim}_{x \rightarrow 1}\left(x^{2}-9\right)}{\operatorname{Lim}_{x \rightarrow 1}(\sqrt{3 x} \mid-3)}=\frac{\lim _{x \rightarrow 1} x^{2}-\lim _{x \rightarrow 1} 9}{\sqrt{\lim _{x \rightarrow 1} 3 x}-\lim _{x} 3}=\frac{(1)^{2}-9}{\sqrt{3(1)}-3}
$$

$$
=\frac{1-9}{\sqrt{3}-3}=\frac{-8}{\sqrt{3}-3}
$$

(11) $\operatorname{Lim}_{x \rightarrow-1} \frac{x^{2}+17}{\sqrt{x+10}+3}$

$$
=\frac{\lim _{\lim _{x \rightarrow-1}\left(x^{2}+17\right)}(\sqrt{x+10}+3)}{}
$$

$$
\begin{array}{r}
\sqrt{x+10}+3\lceil 66 \mid \\
=\sqrt{-1+10}+3 \\
\sqrt{9}+3=3+3 \pm 0 \\
1=0600
\end{array}
$$

$$
\begin{aligned}
& =\frac{\lim _{x \rightarrow-1} x^{2}+\lim _{x \rightarrow-1} 17}{\sqrt{\lim _{x \rightarrow-1}(x+10)}+\lim _{x \rightarrow-1} 3}=\frac{(-1)^{2}+17}{\sqrt{-1+10}+3}=\frac{18}{6}=3 \\
& \text { a } 2 \lim _{x \rightarrow 4} \frac{x^{2}-2 x+6}{x+3}=3 a-4=-\sin
\end{aligned}
$$

$a \in R$ जu

$$
\begin{aligned}
& \lim _{x \rightarrow 4}\left(x^{2}-2 x+6\right) \\
& \lim _{x \rightarrow 4}(x+3) \\
& \frac{(4)^{2}-2(4)+6}{4+3}=3 a-4-4 \rightarrow \frac{16-8+6}{7}=3 a-4 \\
& \frac{14}{7}=3 a-4 \rightarrow 2=3 a-4 \rightarrow 2+4=3 a \rightarrow 6=3 a \\
& a=2
\end{aligned}
$$

$(16) / 2$
$a \in R, a=\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a}=8$ ב 3 .

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{(x-a)(x+a)}{x-a}=8 \\
& \lim _{x \rightarrow a}(x+a)=8 \rightarrow a+a=8 \rightarrow 2 a=8 \\
& a=4 \\
& \lim _{x \rightarrow 1} f(x)=5 \approx \because \quad \underset{\sim}{\sim} f(x)=a x^{2}+b x=\sim|b|
\end{aligned}
$$

$$
\begin{align*}
& a(1)^{2}+b(1)=5 \rightarrow a+b=5 \\
& \left.\because \lim _{x \rightarrow-2} f(x)=8 \rightarrow \lim _{x \rightarrow-2}(1)^{2}+b(1)=5 \rightarrow a+b=5\right)=8 \quad b=5-a, 1 \\
& a(-2)^{2}+b(-2)=8 \\
& 4 a-2 b=8 \tag{2}\\
& 4 a-2 b=8 \quad 4(2) \dot{s}(1) \text { - olesingi } \\
& 4 a-2(5-a)=8 \rightarrow 4 a-10+2 a=8 \rightarrow 6 a=8+10 \\
& \begin{array}{l}
6 a=1 B \rightarrow a=\frac{18}{6}=3 \\
\text { (1) }=1
\end{array} \\
& b=5-a=5-3=2 \\
& \leftarrow(1) \approx \text { 完 } \\
& a=3 \quad b=2
\end{align*}
$$

$(17) / 2$

$$
\begin{aligned}
& f(x)= \begin{cases}x^{2}-3 & x>2 \\
2-2 x & x \leqslant 2\end{cases} \\
& 2 \text { if }(5)
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x) \\
&=\lim _{x \rightarrow 2}\left(x^{2}-3\right)=(2)^{2}-3=4-3=1 \\
& \lim _{x \rightarrow 2}(2-2 x)=2-2(2) \\
&=2-4=-2
\end{aligned}
$$

省
:
i 首 x. $\lim _{x \rightarrow 1} f(x)$ (b) $x \leqslant 2$ d ग ل ال $f(x)=2-2 x, 1$,

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}(2-x)=\lim _{x \rightarrow 0} 2-\lim _{x \rightarrow 0} x & =2-0 \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}(2-2 x)=\lim _{x \rightarrow 1} 2-\lim _{x \rightarrow 1} 2 x \\
& =2-2(1)=2-2=0 \\
& f(x)=\left\{\begin{array}{ll}
x^{2}+1 & x \geqslant 2 \\
2-x & x<2
\end{array}\right. \text { (6) }
\end{aligned}
$$

$18 / 2$

$$
f(x)= \begin{cases}a+2 x & x \leq-1 \\ 3-x^{2} & x>-1\end{cases}
$$

$a \in R$ وك و

- \because الُّاِيَ موبودة

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow-1} 3-x^{2}=\operatorname{Lim}_{x \rightarrow-1} a+2 x \\
& 3-(-1)^{2}=a+2(-1) \\
& 3-1=a-2 \longrightarrow 2=a-2 \rightarrow a=2+2=4
\end{aligned}
$$

据
!عدادية الجزيريرة

- V9.01. YIAT

$$
f(x)=\left\{\begin{array}{ll}
3 x+a & x \geqslant 2 \\
x^{2}-b & x<2
\end{array}\right. \text { (un (8) }
$$

 $a, b \in R$?

$$
\begin{aligned}
& f(\sqrt{2})=5 \rightarrow \lim _{x \rightarrow \sqrt{2}}\left(x^{2}-b\right)=5 \\
& \rightarrow(\sqrt{2})^{2}-b=5 \rightarrow 2-b=5+b=-3 \\
& \therefore f(x)= \begin{cases}3 x+a & x \geqslant 2 \\
x^{2}+3 & x<2\end{cases}
\end{aligned}
$$

:

$$
\begin{aligned}
\therefore \lim _{x \rightarrow 2} 3 x+a & =\lim _{x \rightarrow 2} x^{2}+3 \\
3(2)+a & =(2)^{2}+3 \rightarrow 6+a=7 \rightarrow 9=1
\end{aligned}
$$

19／2

Continuity of function at point
人

（2） $\lim _{x \rightarrow a} f(x)$ ág！g gnánán
रिशو⿻𨈑㇒
（3） $\lim _{x \rightarrow a} f(x)=f(a)$
لوَّ

$$
\begin{aligned}
& \forall b \in R \\
& f(b)=8-b^{3}-2 b^{2} \\
& \begin{aligned}
\lim _{x \rightarrow b} f(x) & =\lim _{x \rightarrow b}\left(8-x^{3}-2 x^{2}\right) \\
& =8-b^{3}-2 b^{2}
\end{aligned} \\
& \therefore \lim _{x \rightarrow b} f(x)=f(b)
\end{aligned}
$$

$$
\begin{array}{ll}
\forall x \in R & \begin{array}{l}
0-0 \\
06
\end{array} f(x) \therefore
\end{array}
$$

年 53

$20 / 2$

: الـل1

$$
\lim _{x \rightarrow 2} x^{2}+4=(2)^{2}+4=8=h_{1}=\min ^{\prime}=21
$$

$$
\operatorname{Lim}_{x \rightarrow 2}-7=-7
$$

$$
\begin{aligned}
& f(2)=(2)^{2}+4=4+4=8 \\
& \text { العُاهِ هن الـير }
\end{aligned}
$$

$$
\begin{aligned}
& f(2)=(2)^{2}+2=4+2=6 \\
& \lim _{x \rightarrow 2}\left(x^{2}+2\right)=4+2=6 \quad \text { inntiósti }=L_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore L_{1}=L_{2} \rightarrow \lim _{x \rightarrow 2} f(x)=6 . \\
& \therefore \operatorname{lin} f(x)=f(2) \\
& x=2 \text { عй }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } f: R \rightarrow R \quad i=12 \text { h hos } \\
& f(x)= \begin{cases}x^{2}+2 & x \geqslant 2 \\
8-x & x<2\end{cases}
\end{aligned}
$$

$21 / 2$

Q $x=3$ 浣 (a)

$$
\begin{aligned}
& f(3)=(3)^{3}+(3)^{2}+3=27+9+3=39 \\
& \lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}\left(x^{3}+x^{2}+3\right)=(3)^{3}+(3)^{2}+3=27+9+3=39 \\
& \because f(3)=\lim _{x \rightarrow 3} f(x) \longrightarrow x=3 \text { ric ánodld } \therefore
\end{aligned}
$$

Q (

$$
\begin{aligned}
& f(a)=\frac{a^{2}}{a^{2}+1} \in R \\
& \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} \frac{x^{2}}{x^{2}+1}=\frac{a^{2}}{a^{2}+1} \in R \\
& \because f(a)=\lim _{x \rightarrow a} f(x) \rightarrow x=a \text { is sondll }
\end{aligned}
$$

保 el !ex إدية الجزيرة $\begin{aligned} \forall x \in R & \therefore \underset{\sim}{\circ} \longrightarrow f(x) \\ \therefore & \therefore f(x)\end{aligned}$
?

$$
\begin{aligned}
& f(a)=a^{3} \\
& \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x^{3}=a^{3} \\
& \because \lim _{x \rightarrow a} f(x)=f(a) \rightarrow x=a \text { us oso all } \rightarrow
\end{aligned}
$$

19／2
$x=-1$ 色 ćal｜لر ا

$$
f(-1)=(-1)^{2}-2=1-2=-1
$$

$$
\lim _{x \rightarrow-1} x^{2}-2=(-1)^{2}-2=-1 \text { الفُاِئِ }
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-1} x^{2}-2=(-1)^{2}-2=-1 \\
& \lim _{x \rightarrow-1} 3 x+1=3(-1)+1=-2
\end{aligned}
$$

，

！عدادية الججزيرة
－V9．01．F1AT

$$
\begin{aligned}
& f(x)= \begin{cases}x-2 & x \geqslant 2 \\
2-x & x<2\end{cases} \\
& f(2)=x-2=2-2=0
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} 2-x=2-2=0=L_{2} \text {, , Lon ódll } \\
& \because L_{1}=L_{2} \rightarrow \lim _{x \rightarrow 2} f(x)=0 \\
& \because \lim _{x \rightarrow 2} f(x)=f(2) \\
& x=2 \text { 溶 }
\end{aligned}
$$

$23 / 2$

$$
\lim x^{2}+a=\operatorname{Lin} 2 x+b \rightarrow(-1)^{2}+3=2(-1)+b
$$

$$
\begin{aligned}
& f(2)=1-2(2)=1-4=-3 \\
& \operatorname{Lim}_{x \rightarrow 2} 1-x^{2}=1-(2)^{2}=1-4=-3=L_{1} \\
& x \rightarrow 2 \\
& \lim _{x \rightarrow 2} 1-2 x=1-2(2)=1-4=-3=L_{2} \\
& \because L_{1}=L_{2} \rightarrow \operatorname{Lim}_{x \rightarrow 2} f(x)=-3
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 1} a x+3=\operatorname{Lim}_{x \rightarrow 1} 3 x^{2}+1 \\
& a(1)+3=3(1)^{2}+1 \\
& a+3=3+1 \rightarrow a+3=4 \rightarrow a=1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& f(2)=7 \text { كان } \\
& f(2)=7 \longrightarrow f(x)=x^{2}+a \\
& f(2)=(2)^{2}+a \rightarrow 4+a=7 \rightarrow a=3
\end{aligned}
$$

$24 / 2$

$$
1+3=-2+b \rightarrow 4=-2+b \rightarrow b=6
$$

(1) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$号
(2) $\lim _{x \rightarrow 1} \frac{2 x^{2}-2}{x^{3}-1}$
(3) $\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x^{2}-9}$

$$
f(x)=a x^{3}+b x-7
$$

(2) $\lim _{x \rightarrow 0} f(x)$
a aie $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x^{2}-8 x+15}=-3 a+11$ =~णाओ

چی

3

الأنسعلت الوزامبة

اعداد الاستاذ

سـعـد العبودي

تطلب حصراً من
مكَبَبَّ الفتحغ الجايــ
$2 / 3$

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \dot{夕} \text { 向 الَ (1) }
$$

＂ $\operatorname{tis} x+\Delta x+x$ Jus negón $f(x+\Delta x)$（2）

$$
\begin{aligned}
& f(x)=x+1 \rightarrow f(x+\Delta x)=(x+\Delta x)+1 \\
& f(x)=2 x^{2}-1 \rightarrow f(x+\Delta x)=2(x+\Delta x)^{2}-1 \\
& f(x)=\frac{1}{x} \rightarrow f(x+\Delta x)=\frac{1}{x+\Delta x}
\end{aligned}
$$

解 एTGS 20
（64）
$0 \rightarrow \Delta x$ Jisvilgé（4）
？
$\because f^{\prime}(x)=\lim _{\Delta \rightarrow \infty} \frac{f(x+\Delta x)-f(x)}{\Delta x}$

$f^{\prime}(2)=\lim _{\Delta x \rightarrow 0} \frac{(2+\Delta x)^{2}+(2+\Delta x)+1-\left[(2)^{2}+2+1\right]}{\Delta x}$
$=\lim _{\Delta x \rightarrow 0} \frac{4 x+4 \Delta x+(\Delta x)^{2}+2+\Delta x+1-7}{\Delta x}$
$=\lim _{\Delta x \rightarrow 0} \frac{5 \Delta x+(\Delta x)^{2}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x(5+\Delta x)}{\Delta x}$

$$
=\lim _{\Delta x \rightarrow 0}(5+\Delta x)=5+0=5
$$

(1)

Generated by CamScanner from intsig．com

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
&=\lim _{\Delta x \rightarrow 0} \frac{\frac{1 \Delta x}{x+\Delta x}-\frac{1}{x}}{\Delta x} \\
& \lim _{\Delta x \rightarrow 0} \frac{\because f(x)=\frac{1}{x}}{\therefore f(x+\Delta x)=\frac{1}{x+\Delta x}}
\end{aligned}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{\frac{x-x-\Delta x}{x(x+\Delta x}}{\frac{\Delta x}{1}}=\lim _{\Delta x \rightarrow 0} \frac{-\Delta x}{x(x+\Delta x)} \times \frac{1}{\Delta x}
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{-1}{x(x+\Delta x)}=\frac{-1}{x(x+0)}=\frac{-1}{x^{2}}
$$

65

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x}= \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} \times \frac{\sqrt{x+\Delta x}+\sqrt{x}}{\sqrt{x+\Delta x}+\sqrt{x}} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)-x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x(\sqrt{x+\Delta x})+\sqrt{20 b}} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt{x+\Delta x}+\sqrt{x}}=\frac{1}{\sqrt{x+0}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

4
 è

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

تش

$$
\left(x_{1}, y_{1}\right) \text { y, } q, 1 ;<\ggg
$$

f $f^{\prime}(2)$ مو $f(x)=x^{2}-1$ با صِ

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
f^{\prime}(2) & =\lim _{\Delta x \rightarrow 0} \frac{f(2+\Delta x)-f(2)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(2+\Delta x)^{2}-1-\left(2^{2}-1\right)^{2}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{444 \Delta x+(\Delta x)^{2}-1-3}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x(4+\Delta x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}(4+\Delta x)=4+0=4=m=l^{\prime}
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

OM-L6 $\begin{gathered}\text { Oles }\end{gathered}$
نُ نـ

$$
f(x)=x^{2}-\frac{1}{2}
$$

$$
\begin{aligned}
& f(x)=x=1 \\
& f(2)=(2)^{2}-1=4-1=3=y \rightarrow\left(x_{1}, y\right)=(2,3)
\end{aligned}
$$

$\therefore y-3=4(x-2)$ ini 160 d, 60

5／3
（6）$f(x)=2 x^{2}+3 x+1$（6）

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \Rightarrow f^{\prime}(2)=\lim _{\Delta x \rightarrow 0} \frac{f(2+\Delta x)-7(2)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \sum^{2(2+\Delta x)^{2}+3(2+\Delta x)+1-\left[2(2)^{2}+3(2)+1\right]} \\
& \\
& =\lim _{\Delta x \rightarrow 0} \frac{2\left(4+4 \Delta x+(\Delta x)^{2}\right)+6+3 \Delta x+1-15}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{8+8 \Delta x+2(\Delta x)^{2}+7+3 \Delta x-15}{\Delta x} \\
& \quad=\lim _{\Delta x \rightarrow 0} \frac{\Delta x(8+2 \Delta x+3)}{\Delta x}=8+2(0)+3=11
\end{aligned}
$$

$$
f(2)=2(2)^{2}+3(2)+1=15=y
$$

$$
\therefore\left(x_{1}, y_{1}\right)=(2,15)=2, w_{1}
$$

$$
\therefore \quad y-y_{1}=m\left(x-x_{1}\right) \rightarrow y-15=11(x-2)
$$

 Cu ollin＇
© Lथम 」
系收

$$
\begin{aligned}
& \frac{-1}{3} \leftrightarrow 3 \\
& \frac{3}{8} \leftrightarrow \frac{-8}{3}
\end{aligned}
$$

$$
-1 \rightarrow 1
$$

"opl الا $s=f(t)$

$$
\therefore
$$

$$
a(t)=V^{\prime}(t)
$$

$$
V(t)=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}=\approx 5, \quad 1168
$$

$$
a(t)=\lim _{\Delta t \rightarrow 0} \frac{v(t+\Delta t)-v(t)}{\Delta t}=f, \cdots i l
$$

$\therefore f(2)=2(2)^{2}+3=8+3=11$ रo जैّ

$$
\begin{aligned}
& v(t)=f^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}, \stackrel{\Delta t}{\Delta t} \\
& v(2)=\lim _{\Delta t \rightarrow 0} \frac{f(2+\Delta t)-f(2)}{\Delta t}
\end{aligned}
$$

7/3

$$
\begin{align*}
& \therefore v(2)=\lim _{\Delta t \rightarrow 0} \frac{2(2+\Delta t)^{2}+3-11}{\Delta t} \tag{2}\\
& =\lim _{\Delta t \rightarrow 0} \frac{2\left(4+4 \Delta t+(\Delta t)^{2}\right)-8}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{8+8 \Delta t+2(\Delta t)^{2}-8}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{\Delta t(8+2 \Delta t)}{\Delta t}=8+2(0)=8
\end{align*}
$$

مو

$$
a(t)=v^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{v(t+\Delta t)-v(t)}{\Delta t} \quad \frac{d \leqslant 1}{v(2+\Delta t)-v(2)}
$$

69

$$
\begin{aligned}
a(2) & =v^{\prime}(2)=\lim _{\Delta t \rightarrow 0} \frac{v(2+\Delta t)-v(2)}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{3(2+\Delta t)^{2}-3(2)^{2}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{3\left(4+4 \Delta t+(\Delta t)^{2}-12\right.}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{12+12 \Delta t 3(\Delta t)^{2}-12}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta t^{\prime}(12+3 \Delta t)}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0}(12+3 \Delta t) \\
& =12+3(0) \\
& =12 \quad \mathrm{~L} / \mathrm{L} \quad \text { ctil }
\end{aligned}
$$

 $f^{\prime}(0), f^{\prime}(3)$?

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
&=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}+5(x+\Delta x)-\left(x^{2}+5 x\right)}{\Delta x} \\
&=\lim _{\Delta x \rightarrow 0} \frac{x^{2}+2 x \Delta x+(\Delta x)^{2}+5 x+5 \Delta x-x^{2}-5 x}{\Delta x} \\
&=\lim _{x} \frac{\Delta x(2 x+\Delta x+5)}{\Delta x}=2 x+5 \\
& \therefore f^{\prime}(x)=2 x+5 \\
& f^{\prime}(3)=2(3)+5=6+5=11 \\
& f^{\prime}(0)=2(0)+5=0+5=5
\end{aligned}
$$

(a) $\frac{3}{x-1}$

331

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{3}{x+\Delta x-1}-\frac{3}{x-1}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\frac{3(x-1)-3(x+\Delta x-1)}{(x-1)(x+\Delta x-1)}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\frac{3 x-3-3 x-3 \Delta x+3}{(x-1)(x+\Delta x-1)}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{-3 \Delta x}{(x-1)(x+\Delta x-1)} \times \frac{1}{\Delta x}=\frac{-3}{(x-1)(x-1)}=\frac{-3}{(x-1)^{!}}
\end{aligned}
$$

3/3

231

$$
\begin{aligned}
& \text { (b) } f(x)=\sqrt{x+1} \\
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x+1}-\sqrt{x+1}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x+1}-\sqrt{x+1}}{\Delta x} \times \frac{\sqrt{x+\Delta x+1}+\sqrt{x+1}}{\sqrt{x+\Delta x+1}+\sqrt{x+1}} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x+1 x-(x+1)}{\Delta x(\sqrt{x+\Delta x+1}+\sqrt{x+1})}=\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt{x+\Delta x+1}+\sqrt{x+1}} \\
& =\frac{1}{\sqrt{x+0+1}+\sqrt{x+1}}=\frac{1}{\sqrt{x+1+\sqrt{x+1}}}=\frac{1}{2 \sqrt{x+1}}
\end{aligned}
$$

(3) $x=1$ 峖 \bar{J}

$$
\begin{align*}
& f(1)=(1)^{2}-3(1)-4=1-3-4=-6(1,-6) \text { d- } \\
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \Rightarrow f^{\prime}(1)=\lim _{\Delta x \rightarrow 0} \frac{f(1+\Delta x)-f(1)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(1+\Delta x)^{2}-3(1+\Delta x)-4-(-6)}{\Delta x} \quad \frac{\Delta x}{f(1)=-6} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1 /+2 \Delta x+(\Delta x)^{2}-3-3 \Delta x-4+6}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x(2+\Delta x-3)}{\Delta x}=\lim _{\Delta x \rightarrow 0}(\Delta x-1)=-1 \tag{1}\\
& \therefore y-y_{1}=m\left(x-x_{1}\right) \\
& y-(-6)=-1(x-1) \rightarrow y+6=-x+1 \\
& y+x+6-1=0 \rightarrow y+x+5=0 \sim 1 \text { - } 1 \text { doleo }
\end{align*}
$$

$80 / 3$
(4)

$$
\begin{aligned}
\text { R }
\end{aligned}
$$

に/R $v(t)=t^{2}+t+1$ = جـد التهجير كند

$$
\begin{aligned}
a(t) & =v^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{v(t+\Delta t)-v(t)}{\Delta t} \\
a(1) & =v^{\prime}(1)=\lim _{\Delta t \rightarrow 0} \frac{v(1+\Delta t)-v(1)}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{(1+\Delta t)^{2}+(1+\Delta t)+1-\left[(1)^{2}+1+1\right]}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{1+2 \Delta t+(\Delta t)^{2}+1+\Delta t+1-3}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{\Delta t(2+\Delta t+1)}{\Delta t} \\
& =3<1 / 2 \quad \text { stith }
\end{aligned}
$$

（11）／3
＂${ }^{\circ}$
I若

$$
\text { Ef } f(x)=\text { xs } \rightarrow f^{\prime}(x)=\dot{e} \text { si }
$$

（a）$f(x)=3 \longrightarrow f^{\prime}(x)=0$
：$f^{\prime}(x) \longrightarrow \longrightarrow \ln ^{2}$
（b）$f(x)=\sqrt{5} \longrightarrow f^{\prime}(x)=0$
（c）$f(x)=3 a+b \rightarrow f^{\prime}(x)=0$
if $f(x)=x^{n} \rightarrow f^{\prime}(x)=n x^{n-1}$
antan oss

1－以教
1－M转
（1）$f(x)=x^{5} \rightarrow f^{\prime}(x)=5 x^{5-1}=5 x^{4}$
（2）$f(x)=x^{2} \rightarrow f^{\prime}(x)=2 x$
（3）

$$
\begin{aligned}
& f(x)=x^{-3} \rightarrow f^{\prime}(x)=-3 x^{-4}-3-1=-4 \\
& \text { (-1, } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { ô, 泣, س } \\
& -3+2=-1 \\
& -1-2=-3 \\
& +1+2=+3 \\
& -2+3=+1 \\
& \text { 㘳っかったい } \\
& \text { (4) } f(x)=x^{\frac{5}{2}} \longrightarrow f^{\prime}(x)=\frac{5}{2} x^{\frac{5}{2}-1}=\frac{5}{2} x^{\frac{3}{2}}
\end{aligned}
$$

$(12) / 3$
(5) $f(x)=x_{-1}^{\frac{2}{5}} \Rightarrow f^{\prime}(x)=\frac{2}{5} x^{\frac{-3}{5}}-\frac{2-5}{5}=\frac{-3}{5}$
(6) $g(t)=t^{\frac{-1}{2}} \rightarrow g^{\prime}(t)=\frac{-1}{2} t^{\frac{-3}{2}} \frac{-1-2}{2}=\frac{-2}{2}$
(7) $f(x)=\frac{1}{x^{-3}}$

in x x
的

$$
f(x)=x^{3} \rightarrow f^{\prime}(x)=3 x^{2}
$$

(8) $f(x)=\frac{1}{x^{5}}=x^{-5} f^{\prime}(x)=-5 x^{-6}$
(9) $f(x)=\sqrt[3]{x}$
©

$$
f(x)=x^{\frac{1}{3} \xrightarrow{\longrightarrow}{ }^{26}} f^{\prime}(x)=\frac{1}{3} x^{\frac{-2}{3}}
$$

$$
f^{\prime}(x)=\frac{-5}{2} x^{\frac{-7}{2}} \frac{-\frac{-5-2}{2}}{2}=\frac{-7}{2}
$$

(11) $f(x)=\frac{1}{\sqrt{x}}$ coso
$f(x)=\frac{1}{x^{\frac{1}{2}}<\text { Lition }}$

$$
\begin{aligned}
& f(x)=x^{\frac{-1}{2}} \\
& f^{\prime}(x)=\frac{-1}{2} x^{\frac{-3}{2}} \frac{-1-2}{2}=\frac{-3}{2}
\end{aligned}
$$

Eloxps EuvWlöstar
$\frac{5}{5}$
$f^{\prime}(x)=n \cdot c x^{n-1}$ $\longleftarrow f(x)=c x^{n} \quad$ a.is $1 ; 1$

州ग गِّ

(1) $f(x)=3 x^{2} \rightarrow f^{\prime}(x)=2\left(3 x^{2}\right)^{-1}=6 x$
(2) $f(x)=-2 x^{3} \rightarrow f^{\prime}(x)=-6 x^{2}$

$$
-=\left\{\begin{array}{ll}
(t) \times(-) \\
(-) \times(t)
\end{array} \quad t=\left\{\begin{array}{l}
(-) \times(-) \\
(t) \times(t)
\end{array}\right.\right.
$$

(3) $y=-4 x^{-1} \rightarrow y^{\prime}=4 x^{-2} \quad-4 x-1=+4$

$$
\text { (4) } \begin{aligned}
f(x)=3 x^{\frac{-1}{2}} \rightarrow f^{\prime}(x) & =3 \cdot \frac{1}{2} x^{\frac{-1}{2}}-1-1=-2 \\
& =\frac{3}{2} x^{\frac{-1}{2}} \frac{1-2}{2}=\frac{-1}{2}
\end{aligned}
$$

(5) $f(x)=\frac{3}{4} x^{2} \rightarrow f^{\prime}(x)=2 \cdot \frac{3}{4} x^{1}=\frac{3}{2} x$
(6) $f(x)=\frac{5}{3} x^{\frac{3}{2}} \rightarrow f^{\prime}(x)=\frac{3}{2} \cdot \frac{5}{3} x^{\frac{3}{2}-1}=\frac{5}{2} x^{\frac{1}{2}}$

$$
f^{\prime}(x)=\frac{3}{5} x^{\frac{-4}{5}}
$$

(3) $f(x)=\frac{3}{x^{2}} \xrightarrow{\text { Sino elaij } f(x)=\frac{3}{5} x^{-2}} f^{-2} \rightarrow f^{\prime}(x)=-6 x^{-3}$
(9) $f(x)=\frac{-2}{\sqrt{x^{3}}}=\frac{-2}{x^{\frac{3}{2}}}=-2 x^{\frac{-3}{2}} \rightarrow f^{\prime}(x)=3 x^{\frac{-5}{2}}$
(14)/s

5

$$
\begin{aligned}
& f^{\prime}(x)=g(x) \mp h(x) \text { ¿U|s| } \\
& f^{\prime}(x)=g^{\prime}(x) \mp h^{\prime}(x)
\end{aligned}
$$

Kiñ نُ
(1) $f(x)=x^{2}+3 x+1$ fir loxed all.

$$
f^{\prime}(x)=2 x+3
$$

(2) $y=3 x^{-4} x^{3} x^{-2} x^{2}$ ase

$$
y^{\prime}=-12 x^{-5}+\frac{3}{2} x^{2}+10 x^{-3}+9
$$

(3)

$$
\begin{aligned}
& f(x)=x^{3}-\frac{3}{x^{2}}+\sqrt{x}-1 \\
& f(x)=x^{3}-3 x^{-2}+x^{\frac{1}{2}}-1 \\
& f^{\prime}(x)=3 x^{2}+6 x^{-3}+\frac{1}{2} x^{-\frac{1}{2}}
\end{aligned}
$$

$f^{\prime}(x)=c \varangle f(x)=c x$ こuvis dext
ghol

$$
\begin{aligned}
& f(x)=3 x \rightarrow f^{\prime}(x)=3 \\
& y=\frac{-1}{2} x \longrightarrow y^{\prime}=\frac{-1}{2} \\
& f(x)=\sqrt{3} x \rightarrow f^{\prime}(x)=\sqrt{3}
\end{aligned}
$$

15／3
des （c） \square
）مـو

$$
\begin{aligned}
& f^{\prime}(x)=g(x) \cdot h(x) \\
& f^{\prime}(x)=g(x) \cdot h^{\prime}(x)+h(x) \cdot g^{\prime}(x)
\end{aligned}
$$

（1）

$$
f(x)=\left(x^{2}+1\right)(3 x-2)
$$

$$
\text { 2) } f(x)=\left(x^{4}-x^{2}+1\right)\left(5 x^{6}-3 x\right)
$$

$$
f^{\prime}(x)=\left(x^{4}-x^{2}+1\right)\left(30 x^{5}-3\right)+\left(5 x^{6}-3 x\right)\left(4 x^{3}-2 x\right)
$$

（3）
，＜uration

$$
f(x)=x^{\frac{1}{2}}(x+6)
$$

$(2,91)$ U $ل$（1）（1）

$$
\begin{aligned}
& f(x)=x^{\frac{1}{2}} x^{1}+6 x^{\frac{1}{2}} \\
& f(x)=x^{\frac{3}{2}}+6 x^{\frac{1}{2}} \\
& f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}+3 x^{\frac{-1}{2}} \\
& f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}+\frac{3}{\sqrt{x}}
\end{aligned}
$$

J 2 aib
（in）

$$
\begin{aligned}
f^{\prime}(x) & =x^{\frac{1}{2}}(1)+(x+6) \cdot \frac{1}{2} x^{-1} \\
& =x^{\frac{1}{2}}+\frac{1}{2} x^{\frac{1}{2}}+3 x^{-\frac{1}{2}} \\
& =\frac{3}{2} x^{\frac{1}{2}}+3 x^{\frac{-1}{2}} \\
& =\frac{3}{2} x^{\frac{1}{2}}+\frac{3}{\sqrt{x}}
\end{aligned}
$$

16/3

$$
f(x)=\frac{g(x)}{h(x)}
$$

$$
f^{\prime}(x)=\frac{h(x) \cdot g^{\prime}(x)-g(x) \cdot h^{\prime}(x)}{[h(x)]^{2}}
$$

(1)

$$
\begin{aligned}
& f(x)=\frac{3}{x^{2}+1} \\
& f^{\prime}(x)=\frac{\left(x^{2}+1\right) \cdot 0-3 \cdot 2 x}{3}\left(x^{2}+1\right)^{2}
\end{aligned}=\frac{-6 x}{\left(x^{2}+1\right)^{2}}
$$

(2)

$$
\begin{aligned}
f(x) & =\frac{x^{3}+1}{x^{4}+1} \quad x=1 \text { is } \quad \text { á op } 0 \\
f^{\prime}(x) & =\frac{\left(x^{4}+1\right)\left(3 x^{2}\right)-\left(x^{3}+1\right)\left(4 x^{3}\right)}{\left(x^{4}+1\right)^{2}} \\
f^{\prime}(1) & =\frac{\left(1^{4}+1\right)\left(3(1)^{2}\right)-\left((1)^{3}+1\right)\left(4(1)^{3}\right)}{\left((1)^{4}+1\right)^{2}} \\
& =\frac{(2)(3)-(2)(4)}{(2)^{2}}=\frac{-2}{4}=\frac{-1}{2}
\end{aligned}
$$

(3) $y=\frac{-2 x}{(1-x)}$
$Q\left({ }^{(a \operatorname{lip}}\right) \frac{d y}{d x}>$

$$
\frac{d y}{d x}=\frac{(1-x) \cdot(-2)-(-2 x)(-1)}{(1-x)^{2}}=\frac{-2+2 x-2 x}{(1-x)^{2}}=\frac{-2}{(1-x)^{2}}
$$

$$
\begin{aligned}
& \text { - } \\
& \text { (} \frac{\text { b }}{\text { 人 }} \text {) }
\end{aligned}
$$

17/3
 cut $f(x)=[h(x)]^{n}$ cirbiot

$$
f^{\prime}(x)=n[h(x)]^{n-1} \cdot h^{\prime}(x)
$$

(1)

$$
f(x)=\left(x^{2}+1\right)^{3} \rightarrow f^{\prime}(x)=3\left(x^{2}+1\right)^{2}(2 x) \text { afiol }
$$

$$
f^{\prime}(x)=6 x\left(x^{2}+1\right)^{2}
$$

(2)

$$
\begin{aligned}
& f(x)=\left(x^{3}+x^{2}+x+1\right)^{5} \\
& f^{\prime}(x)=5\left(x^{3}+x^{2}+x+1\right)^{4} \cdot\left(3 x^{2}+2 x+1\right)
\end{aligned}
$$

w-

$$
\begin{aligned}
& \text { (3) } f(x)=\sqrt{x^{2}-2 x+1}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\left(x^{2}-2 x+1\right)^{\frac{1}{2}} \\
& f^{\prime}(x)=\frac{1}{2}\left(x^{2}-2 x+1\right)^{\frac{-1}{9}}(2 x-2) \\
& \text { जق=0 } \\
& \text { 2. ख1 और fold } \\
& =\frac{1}{2}\left(x^{2}-2 x+1\right)^{\frac{-1}{2}} \cdot 2(x-1) \\
& =\frac{(x-1)}{\left(x^{2}-2 x+1\right)^{\frac{1}{2}}}=\frac{(x-1)}{\sqrt{\left(x^{2}-2 x+1\right)}}
\end{aligned}
$$

18/3
(4) $f(x)=\left(\frac{x}{x+1}\right)^{4} \quad x=1$ (3) \quad jes $f^{\prime}(x)$?

㑕

$$
\begin{aligned}
& f^{\prime \prime}(-1) \text { ? } \\
& f(x)=2 x^{3}+4+3 x^{-1} \\
& \text { Sivouetions } \\
& f^{\prime}(x)=6 x^{2}-3 x^{-2}=6 x^{2}-\frac{3}{x^{2}} \\
& 2) 15 \\
& \text { اعدادية الجزير الجيرة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ? } y^{\prime \prime} 6 y^{\prime}>1=x^{4}+5 x^{3}+3 \\
& y=4 x^{3}+15 x^{2}-3, y, 2=1 \\
& y^{\prime \prime}=12 x^{2}+30 x \text {-iñ }
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=4\left(\frac{x}{x+1}\right)^{3} \times\left(\frac{(x+1) \cdot 1-x(1)}{(x+1)^{2}}\right) \\
& \text { wh } \\
& =4\left(\frac{x}{x+1}\right)^{3}\left(\frac{x+1-x x}{(x+1)^{2}}\right)=4\left(\frac{x}{x+1}\right)^{3}\left(\frac{1}{(x+1)^{2}}\right) \\
& f^{\prime}(1)=4\left(\frac{1}{1+1}\right)^{3}\left(\frac{1}{(1+1)^{2}}\right)=4\left(\frac{1}{8}\right)\left(\frac{1}{4}\right)=\frac{1}{8} \\
& y=f(x) \quad \text { च } 10 \\
& \text { i } \\
& y^{\prime}=f^{\prime}(x)=\frac{d y}{d x} \quad 2,810=\square
\end{aligned}
$$

19/3

غاريت (2-2)

:
(a)

娄
(b) $f(x)=(4-x)\left(x^{2}+3\right), x=2$

33

$$
\begin{aligned}
f^{\prime}(x) & =(4-x)(2 x)+\left(x^{2}+3\right)(-1) \\
f^{\prime}(2) & =(4-2)(2(2))+\left((2)^{2}+3\right)(-1) \\
& =(2)(4)+(7)(-1)=8-7=1
\end{aligned}
$$

(x) D , 5
(c) $f(x)=\frac{4-5 x}{x^{2}+x+1}, x=-1$

$$
f(x)=\frac{\left(x^{2}+x+1\right)(-5)-(4-5 x)(2 x+1)}{\left(x^{2}+x+1\right)^{2}}
$$

$$
\begin{aligned}
& f(x)=x^{3}-4 x^{2}+x-1 \quad, x=1 \\
& f^{\prime}(x)=3 x^{2}-8 x+1 \\
& f^{\prime}(1)=3(1)^{2}-8(1)+1=3-8+1=-4 \\
& 1+x \text { ج }
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}-3 x^{-2} \\
& f^{\prime \prime}(x)=12 x+6 x^{-3}=12 x+\frac{6}{x^{3}} \\
& \therefore f^{\prime \prime}(-1)=12(-1)+\frac{6}{(-1)^{3}}=-12-6=-18
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1, } 1 \times 1=(-1)^{28} \\
& H+1=(-1)^{n-9}
\end{aligned}
$$

20%

$$
\begin{aligned}
f^{\prime}(-1) & =\frac{\left[(-1)^{2}+(-1)+(+1)\right](-5)-[4-5(-1)[2(-1)+1]]}{\left[(-1)^{2}+(-1)+1\right)^{2}} \\
& =\frac{[1-1+1](-5)-[9][-1]}{[1-1+1]^{2}}=\frac{-5+9}{1}=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } f(x)=\frac{1}{\sqrt{2 x+1}} \quad x=0 \\
& f(x)=\frac{1}{(2 x+1)^{\frac{1}{2}}}=(2 x+1)^{\frac{-1}{2}} \\
& f^{\prime}(x)=\frac{-1}{2}(2 x+1)^{\frac{-3}{2}}(2)=\frac{-1}{(2 x+1)^{\frac{3}{2}}} \\
& f^{\prime}(0)=\frac{-1}{(2(0)+1)^{3} z}=\frac{-1}{(1)^{3 / 2}}=\frac{-1}{1}=-1
\end{aligned}
$$

$$
\text { (e) } f(x)=x+\frac{3}{x^{2}+2}, x=-1
$$

$$
f^{\prime}(x)=1+\frac{\left(x^{2}+2\right)+0-3(2 x)}{\left(x^{2}+2\right)^{2}}
$$

$$
f^{\prime}(x)=1+\frac{-6 x}{\left(x^{2}+2\right)^{2}}
$$

$$
f^{\prime}(-1)=1+\frac{-6(-1)}{\left[(-1)^{2}+2\right]^{2}}=1+\frac{6}{9}=1+\frac{2}{3}
$$

$$
=1 \frac{2}{3}
$$

$20^{1 / 3}$

$$
f^{\prime}(x)=0 f(x)=\left(x^{2}-3\right)^{4} \quad \ddot{\sim} \mid<1 \leq 1 \text { (2) }
$$

$$
x=2 \operatorname{sic} f^{\prime \prime}(x)
$$

$$
\begin{aligned}
f^{\prime}(x) & =4\left(x^{2}-3\right)^{3} \cdot 2 x \\
f^{\prime}(2) & =4(4-3)^{3} \cdot 4=16(1)^{3}=16 \\
f^{\prime}(x) & =8 x\left(x^{2}-3\right)^{3} \\
f^{\prime}(x) & =8 x \cdot 3\left(x^{2}-3\right)^{2} \cdot 2 x+\left(x^{2}-3\right)^{3} \cdot 8 \\
f^{\prime \prime}(2) & =48 x^{2}\left(x^{2}-3\right)^{2}+8\left(x^{2}-3\right)^{3} \\
f^{\prime \prime}(2) & =48(2)^{2}(4-3)^{2}+8(4-3)^{3} \\
& =192+8=200
\end{aligned}
$$

$$
f^{\prime}(2), f^{\prime}(x)>f(x)=\left(x^{3}+3 x^{2}-3\right)^{\frac{3}{2}} \dot{a} \text { 任 }
$$

31

$$
f^{\prime}(x)=\frac{3}{2}\left(x^{3}+3 x^{2}-3\right)^{\frac{1}{2}} \cdot\left(3 x^{2}+6 x\right) \quad \text { जु क्व वx } 15
$$

$$
\begin{aligned}
f^{\prime}(2) & =\frac{3}{2}(8+12-3)^{\frac{1}{2}}(12+12) \\
& =\frac{3}{2}(17)^{\frac{1}{2}}(24)=36 \sqrt{17}
\end{aligned}
$$

$\frac{19}{(1) f(x)=\sqrt{1-2 x+3 x^{2}}}$

(2) $f(x)=\sqrt{x}\left(x^{2}+1\right)$
(3) $f(x)=\frac{-3 x}{1+x^{3}}$
(4) $=\left(x^{6}-3 x^{4}+2 x^{2}+1\right)^{-2}$
(5) $f(x)=x^{3}-\frac{1}{x^{-2}}+x^{-1}+9$

21/3
الن.
-

- انَ
$y-y_{1}=m\left(x-x_{1}\right)$ widalso

$$
318.23
$$

a
Ale又ا बोग

$$
\begin{aligned}
& f(x)=x^{2}-5 x+2 \\
& f(1)=(1)^{2}-5(1)+2=1 \\
& \text { ácopis m ch } 1, \\
& f^{\prime}(x)=2 x-5 \\
& f^{\prime}(1)=2(1)-5=-3=m
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x-5 x+2 \\
& f(1)=(1)^{2}-5(1)+2=1-5+2=-2 \rightarrow(1,-2)
\end{aligned}
$$

<

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-(-2)=-3(x-1) \rightarrow y+2=-3 x+3 \\
& y+3 x+2-3=0 \rightarrow y+3 x-1=0 \text { ज6ódleo }
\end{aligned}
$$

22/3

$$
\begin{aligned}
& f(x)=\sqrt[3]{x+3} \\
& f(5)=\sqrt[3]{5+3}=\sqrt[3]{8}=2=y_{1} \rightarrow-5(5,2) \text {-62 } \\
& f(x)=(x+3)^{\frac{1}{3}} \rightarrow f^{\prime}(x)=\frac{1}{3}(x+3)^{\frac{-2}{3}} \cdot 1 \\
& f(x)=\frac{1}{3(x+3)^{\frac{2}{3}}} \rightarrow f^{\prime}(5)=\frac{1}{3(5+3)^{\frac{2}{3}}}=\frac{1}{3(8)^{\frac{2}{3}}}
\end{aligned}
$$

$$
=\frac{1}{3\left[(2)^{3}\right]^{\frac{2}{3}}}=\frac{1}{3(2)^{2}}=\frac{1}{12}=m
$$

$$
\therefore y-y_{1}=m\left(x-x_{1}\right) \rightarrow y-2=\frac{1}{12}(x-5) \sqrt{12 x}
$$

$$
12 y-24=(x-5) \rightarrow-12 y-x-19=0 \text { जर्कd? }
$$

 ? Ulonel 1 , odeter

$$
\begin{aligned}
& \therefore x=0 \rightarrow y=(0)^{2}+1 \rightarrow y=1 \rightarrow(0,1) \cdots 1=1 \text { ad: } \\
& y^{\prime}=2 x \rightarrow y=2(0)=0=m \\
& \therefore y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=0(x-0) \\
& y-1=0 \quad \text { (1-d,las }
\end{aligned}
$$

जـلم $y=5$ lo is $y=\frac{2 x+1}{3-x}$ frin $\leftarrow(x, y)$ い
\because

$$
\begin{aligned}
& 15-5 x=2 x+1 \rightarrow 15-1=2 x+5 x \rightarrow 14=7 x \rightarrow x=\frac{14}{7} \\
& \therefore x=2 \rightarrow(2,5) \text { ज1-1 \& ade } \\
& y^{\prime}=\frac{(3-x) \cdot 2-(2 x+1)(-1)}{(3-x)^{2}}=\frac{(3-2) \cdot 2-(4+1)(-1)}{(3-2)^{2}} \\
& y^{\prime}=\frac{2+5}{1}=7=m
\end{aligned}
$$

()

$$
\begin{aligned}
& \therefore y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=7(x-2) \rightarrow y-5=7 x-14 \\
& \rightarrow y-7 x+9=0 \sim 1-1 \text { use } \\
& \triangleright y-5=\frac{-1}{7}(x-2) \xrightarrow{x(7)_{>}} 7 y-35=-x+2 \\
& \therefore 7 y+x-37=0 \text {, ell }=7,100
\end{aligned}
$$

\rightarrow ¢ C L (الورقَةَ والقلم) •لانقرائسفُجِ فعف
$25 / 3$

$$
\begin{aligned}
& f^{\prime}(x)=m \rightarrow 4 x+4=0 \\
& 4 x=-4 \rightarrow x=-1
\end{aligned}
$$

$$
\therefore y=f(-1)=2(-1)^{2}+4(-1)+3
$$

$$
=2-4+3=-2+3=1
$$

$$
(-1,1) \simeq \text { ज }
$$

$$
\begin{align*}
& \left.2 x+y+3=0 \quad \frac{-2}{1}=\frac{x \text { voo }}{y \text { vio }}=r^{2=6} \right\rvert\, \text { yo } \\
& \therefore m=2 \tag{31}\\
& f^{\prime}(x)=m \rightarrow 2 x-4=-2 \rightarrow 2 x=2 \xrightarrow{2 \div} x=1 \\
& f(1)=(1)^{2}-4(1)+5=1-4+5=2=y
\end{align*}
$$

- bेo N0

$$
\leftrightarrow u_{0} u_{l}
$$

\square
\leftrightarrow M,
c)

6, Hycúsul

26／3
和䦼 $f(x)=x^{2}+a x+b$ 部 ع © पіَães）b，a
＝vórléevs

$$
\begin{aligned}
& \because f(x)=x^{2}+a x+b
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 4=-2+a \longrightarrow a=6
\end{aligned}
$$

89
نغ $y=f(x)(x, y)$（

$$
\left.\begin{array}{rl}
\because f(x) & =x^{2}+a x+b \\
q & =(-3)^{2}+6(-3)+b
\end{array}\right)
$$

，未位
年

$27 / 3$

 ?

$$
\begin{aligned}
& s(t)=t^{3}+3 t^{2}+4 t+1 \\
& v(t)=s^{\prime}(t)=3 t^{2}+6 t+4 \\
& a(t)=v^{\prime}(t)=6 t+6
\end{aligned}
$$

اطونو 玉ِاءِّرن

نِ'slzas
النُجِّ
iegó
 هِ
 Tel is, qué Lo (2)

府

$$
\begin{aligned}
& \because V(t)=2 t-20 \rightarrow 0=2 t-20 \rightarrow t=10 \text { os reort } \\
& \therefore s(10)=(10)^{2}-20(10)+120=100-200+120=20 \text { م }
\end{aligned}
$$

|الاستاذ سيد, العبّوديم

$$
\begin{aligned}
& v(t)=2 t-20 \\
& \text {) } \\
& V(5)=2(5)-20=10-20=-10 \text { asL/5. } \quad t=5 \text { 20 20 }
\end{aligned}
$$

$$
\begin{aligned}
& s(5)=(5)^{3}+3(5)^{2}+4(5)+1 \\
& =125+75+20+1=221 \quad=0(6) \\
& V(5)=3(5)^{2}+6(5)+4=75+30+4=109 \mathrm{~s} / \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& a(5)=6(5)+6=36{ }^{<} \text {s/r }
\end{aligned}
$$

$28 / 3$
㝡 $s(t)=\sqrt{2 t+1}$ C． $1 / \Gamma \frac{1}{3}$ ans

$$
\begin{aligned}
& V(t)=\frac{1}{(2 t+1)^{\frac{1}{2}}}=\frac{1}{\sqrt{2 t+1}}
\end{aligned}
$$

91

动㓌

$$
\begin{aligned}
& \because S(t)=96 t+16 t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& v(2)=96-32(2)=96-64=32 \mathrm{~L} / \mathrm{s} \rightarrow t=2 \text { ar, } \quad \rightarrow 1
\end{aligned}
$$

$$
\begin{aligned}
& \because v(t)=96-32 t \rightarrow 0=96-32 t \rightarrow 32 t=96 \\
& t=\frac{96}{3 i} \rightarrow t=3 \quad-\omega L \\
& .89 .01 .4117
\end{aligned}
$$

29/3

$$
s(t)=t^{3}-6 t^{2}+18 t+12 \text { चिلا }
$$

is

م $V(t)$ لنُر

$$
\because S(t)=t^{3}-6 t^{2}+18 t+12 \text { apl; }
$$

$$
\therefore \Rightarrow \vee(t)=3 t^{2}-12 t+18 \quad \text { as, }
$$

$$
a(t)=6 t-12
$$

$$
0=6 t-12 \rightarrow 6 t=12 \rightarrow t=2 \rightarrow \text { in }
$$

$$
s(2)=(2)^{3}-6(2)^{2}+18(2)+12
$$

$$
=8-24+36+12
$$

$$
=32-1 \rightarrow t=2 h \operatorname{sis} r_{1}^{3}, 2
$$

$$
\text { ؟, 仿 } 4,{ }^{\prime} \text { ' }
$$

\rightarrow هتْها

情宛
áébl لaso $A C=\frac{C(x)}{x}$
(AC)'

3
（93）

（b）$A C=\frac{c(x)}{x}=\frac{3 x^{2}-60 x+1200}{x}=3 x-60+\frac{1200}{x}$ iك小 d

$$
\text { (C) }(A C)^{\prime}=\frac{\hat{d}}{d x}(A C)=3-\frac{1200}{x^{2}}-\frac{1200}{x}=1200 x^{-t-30}-1200 x^{2}
$$

$$
\therefore 3-\frac{1200}{x^{2}}=0 \xrightarrow{\left.X^{3}-1\right)} 3 x^{2}=1200 \rightarrow x^{2}=400 \rightarrow x=20
$$

$$
\begin{aligned}
& \text { > } c(x)=3 x^{2}-60 x+1200
\end{aligned}
$$

$31 / 3$

$x=0 \operatorname{sic} f(x)=x^{3}-3 x^{2}+9 x+5$ ixibledors (1)

$$
f(0)=(0)^{3}-3(0)^{2}+9(0)+5=5=y
$$

$(0,5)$ s-d.a \quad a
($x=0$ us veqúg ونَ

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x+9 \\
& f^{\prime}(0)=3(0)^{2}-6(0)+9=9=m \\
& \therefore y-y_{1}=m\left(x-x_{1}\right) \rightarrow y-5=9(x-0) \\
& y-9 x-5=0<y-5=9 x \text { ubidso }
\end{aligned}
$$

$$
\begin{aligned}
& y=(2-3)^{3}=(-1)^{3}=-1 \rightarrow(2,-1) \text { un } y=(x-3)^{3} \\
& y^{\prime}=3(x-3)^{2} \cdot 1 \rightarrow y^{\prime}=3(2-1)^{2}=3=m \\
& \therefore y-y_{1}=m\left(x-x_{1}\right) \rightarrow y-(-1)=3(x-2) \\
& y+1=3 x-6 \rightarrow y-3 x+7=0 \rightarrow 6,6,60
\end{aligned}
$$

$$
\begin{aligned}
& \therefore y+1=\frac{-1}{3}(x-2) \xrightarrow{3} \rightarrow 3 y+3=-1(x-2) \\
& 3 y+3=-x+2 \longrightarrow x+x+1=0
\end{aligned}
$$

3./3

$f(x)=x^{3}-2 x+\frac{3}{x^{2}+2}$ (3) ?, $x=-1$ sin
(95)

نو

$$
\begin{gathered}
f^{\prime}(x)=m \\
3 x^{2}-6 x-9=0 \quad \text { evini,g 3 } 20,90
\end{gathered}
$$

$$
\begin{aligned}
& 3 x-6 x-9=0 \\
\div & 3 \longrightarrow x^{2}-2 x-3=0 \xrightarrow{?}(x-3)(x+1)
\end{aligned}
$$

Lo $^{5} x-3=0 \rightarrow x=3$, 1

$$
I^{5} 1 x=3 \rightarrow f(3)=(3)^{3}-3(3)^{2}-9(3)+4
$$

$$
\begin{aligned}
& =(3)-3(3)-9(3)+4 \\
& =9 \%-9 \%-97+4=-23(3,-23) \text { Y } 2 / 3
\end{aligned}
$$

|'s

$$
\begin{aligned}
x=-1 \rightarrow f(-1) & =(-1)^{3}-3(-1)^{2}-9(-1)+4= \\
& =-1-3+9+4=9 \quad(-1,9)+U_{1} \text { व就) }
\end{aligned}
$$

$$
\begin{aligned}
& f(-1)=(-1)^{3}-2(-1)+\frac{3}{(-1)^{2}+2} \\
& \begin{aligned}
f^{\prime}(x)=3 x^{2}-2+\frac{3}{\left(x^{2}+2\right) \cdot 0-3 \cdot 2 x} \\
\left(x^{2}+2\right)^{2}
\end{aligned} \\
& =3 x^{2}-2+\frac{-6 x}{\left(x^{2}+2\right)^{2}} \\
& \begin{aligned}
f^{\prime}(-1) & =3(-1)^{2}-2+\frac{-6(-1)}{\left[(-1)^{2}+2\right]^{2}} \\
& =1+\frac{6}{9}=1+\frac{2}{3}=\frac{5}{3}=\text { ury } \\
\therefore y_{-} y_{1} & =m\left(x-x_{1}\right) \rightarrow y-2=\frac{5}{3}(x-(-1))
\end{aligned} \\
& \begin{aligned}
f^{\prime}(-1) & =3(-1)^{2}-2+\frac{-6(-1)}{\left[(-1)^{2}+2\right]^{2}} \\
& =1+\frac{6}{9}=1+\frac{2}{3}=\frac{5}{3}=\text { ury } \\
\therefore y_{-} y_{1} & =m\left(x-x_{1}\right) \rightarrow y-2=\frac{5}{3}(x-(-1))
\end{aligned} \\
& 2+1+2+\frac{3}{3}=-1+2+1=2 \rightarrow(-1,2) \text { adi } \\
& \therefore y_{-} y_{1}=m\left(x-x_{1}\right) \rightarrow y-2=\frac{5}{3}(x-(-1)) \xrightarrow{3} \\
& 3 y-6=5 x+5 \rightarrow 3 y-5 x-11=0 \text { जLidilas }
\end{aligned}
$$

$33 / 3$
（5）（5）

$$
2 x-y=0 \text { rérel }
$$

$$
\begin{aligned}
& m=\frac{-x d \omega}{y \text { jow }}=\frac{-2}{-1}=2 \quad \text { wn yons } \\
& f^{\prime}(x)=m \rightarrow 2 x-4=2 \rightarrow 2 x=6 \rightarrow x=3 \\
& \text { ~㹉 च } \\
& f(3)=(3)^{2}-4(3)+5=9-12+5=-3+5=2 \\
& (3,2) \text { 三bani: }
\end{aligned}
$$

－ $1 /$ N 1
F～＂ Uِ

$$
\begin{aligned}
& v(t)=\frac{2 t}{\sqrt{2 t^{2}+18}}, v(t)=1 \\
& 1=\frac{2 t}{\sqrt{2 t^{2}+18}} \stackrel{\text { 足 } b=-2 e,}{2 t^{2}+18}=2 t \\
& \text { (2) } 2 \rightarrow\left(2 t^{2}+18\right)=(2 t)^{2} \rightarrow 2 t^{2}+18=4 t^{2} \\
& 2 t^{2}=18 \rightarrow t^{2}=9 \rightarrow t=3 \text { si } t=-3 \text { for } \\
& S(t)=\sqrt{2 t^{2}+18} \quad \Rightarrow \| \lambda \leq t=3 \text { uegú } \\
& s(3)=\sqrt{2(3)^{2}+18}=\sqrt{18+18}=\sqrt{36}=6 \mathrm{w}
\end{aligned}
$$

$(248) / 3$

 'Í

$$
\begin{aligned}
& s(t)^{\prime}=t^{3}-6 t^{2}+9 t+7 \\
& v(t)=s^{\prime}(t)=3 t^{2}-12 t+9 \rightarrow 3 t^{2}-12 t+9=0(\div 3) \\
& \left.t^{2}-4 t+3=0 \longrightarrow(t-3)(t-1)=0 \rightarrow t=3\right),(t=1) \\
& t=3 \longrightarrow s(t)=t^{3}-6 t^{2}+9 t+7 \\
& s(3)=(3)^{3}-6(3)^{2}+9(3)+7=27-54+27+7=7 \\
& t=1 \rightarrow s(1)=(1)^{3}-6(1)^{2}+9(1)+7=1-6+9+7=11
\end{aligned}
$$

97
(b)
$s(t)$ ' 2 ág र

$$
\begin{aligned}
\because v(t) & =3 t^{2}-12 t+9 \\
a(t) & =v^{\prime}(t)=6 t-12 \rightarrow 6 t-12=0 \rightarrow 6 t=12 \\
\therefore t & =2 \vdots 1 \\
\therefore s(t) & =(2)^{3}-6(2)^{2}+9(2)+7 \\
& =8-24+18+7=9 \text { w }
\end{aligned}
$$

$$
M C=C(x)=30-\frac{20}{x^{2}} \text { क, abls) }
$$? ól 50 31

$$
M C=\hat{c}(50)=30-\frac{x^{2}}{2500}=\frac{1500-2}{2500}=\frac{2 \pi 2}{250}=29,992
$$

有
$35 / 3$

$$
c(x)=\frac{1}{2} x^{2}-2 x+5 \text { (9) لتّكن }
$$

بهد

$$
c(x)=\frac{1}{2} x^{2}-2 x+5
$$

$A C$ تill，J ， 1

$$
\begin{aligned}
& A C=\frac{C(x)}{x}=\frac{\frac{1}{2} x^{2}-2 x+5}{x}=\frac{\frac{1}{2} x^{2}}{x}-\frac{2 x}{x}+\frac{5}{x} \\
& A C=\frac{1}{2} x-2+5 x^{-1} \text { - كلكा ت́lكulines all. }
\end{aligned}
$$

$x=2$ 为 s

 ？$a, b \in R \xrightarrow{*}$
$x \neq 0$ on $f(x)=\frac{2 x+3}{x}=$ vis $f^{\prime}(-2) \subset f^{\prime}(x)$ s（4）
个的

$35 / 3$

$$
c(x)=\frac{1}{2} x^{2}-2 x+5 \text { (9) لتّكن }
$$

Pه

$$
c(x)=\frac{1}{2} x^{2}-2 x+5
$$

$M C=c^{\prime}(x)=2 \cdot \frac{1}{2} x-2=x-2 \quad$ (2, 3 ,ál
$A C$ चís, ,

$$
\begin{aligned}
& A C=\frac{C(x)}{x}=\frac{\frac{1}{2} x^{2}-2 x+5}{x}=\frac{\frac{1}{2} x^{2}}{x}-\frac{2 x}{x}+\frac{5}{x}
\end{aligned}
$$

$x-y=5$ -
$x=2$ is s.

- Jun
 P $a, b \in R$ R
$x \neq 0 \because f(x)=\frac{2 x+3}{x}=$ vis $\quad f^{\prime}(-2)$ ($f^{\prime}(x)$ \& (4)
中

.

اللنها يأ

هـطوات الـ
(1) $f^{\prime}(x)$
(1)
(2) $f^{\prime}(x)=0$

زeلl (2)
(3) $x=a$

$$
x \text { (3) }
$$

99
s) ون (5)
$f^{\prime}(x)$, $01 \& \quad x<a \quad a \quad x>a>$
 تّاركیر

$$
x<a \sin z^{2} 3 t=
$$

لا لانَبار

造 $\xrightarrow{x>a r e n-}$
(4)
!
19.01.T147
$37 / 3$

(a, b)
 ,
(a)

עا

人

Oppa

Eueلا
(2)

㥩, $\left\{\begin{array}{l}\text { (1) }\end{array}\right.$

نق
$38 / 3$
190.0 ولئَا
(1) $f(x)=x^{2}-4 x+1$

3

$$
\begin{aligned}
& f(x)=x^{2}-4 x+1 \\
& f^{\prime}(x)=2 x-4 \rightarrow 2 x-4=0 \longrightarrow 2 x=4 \rightarrow x=2
\end{aligned}
$$

$$
f^{\prime}(x)
$$

Cilizugh's $\varepsilon=$ foquralos,

$$
\begin{aligned}
f^{\prime}(x) & =2 x-4,3,81 \\
& =2(1)-4=2-4 \\
& =-2
\end{aligned}
$$

$(2, y)$
ow wev -

$\{x: x \in R, x>2\}$ ِ. 17 जêtio $\{x: x \in R, x<2\}$ 位L

$101)$
$f(2)=(2)^{2}-4(2)+1=4-8+1=-3$
(2) $f(x)=x^{3}-3 x+6$
b

ज
$(-1,1)$ asoco 1

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-3 \rightarrow 3 x^{2}-3=0 \rightarrow 3 x^{2}=3 \div 3 \\
& x^{2}=1 \rightarrow x=\mp 1 \\
& \text { o } \\
& \text { (1) }\{x ; x \in R, x>1\} \\
& \text { (2) }\{x: x \in R, x<-1\} \\
& (-1, y)
\end{aligned}
$$

\therefore ㅎoc
$(1, y)$
Olín = = 0
$39 / 3$
Y عندا $x=1$ نوْ

$$
f(x)=x^{3}-3 x+6 \rightarrow f(1)=(1)^{3}-3(1)+6=1-3+6
$$

$\therefore y=4 \rightarrow(1,4)$ a drespáa

$f(-1)=(-1)^{3}-3(-1)+6=-1+3+6 \longleftarrow x=-1$ Lés $y=8 \rightarrow(-1,8)$ Nésolin ada

(3) $f(x)=(2-x)^{3}$

31

$$
\begin{aligned}
& f^{\prime}(x)=3(2-x)^{2} \cdot-1=-3(2-x)^{2} \rightarrow-3(2-x)^{2}=0 \\
\div & 3 \rightarrow(2-x)^{2}=0 \xrightarrow{2} \rightarrow \text { 年 } 1 \text {, } 2-x=0 \rightarrow x=2
\end{aligned}
$$

هن
(1) $\{x: x \in R, x>2\}$
(2) $\{x: x \in R, x<2\}$

$(2, y)$

$$
f(x)=(2-x)^{3}=(2-2)^{3}=0 \stackrel{\text { Pel }}{4}
$$

(4) $f(x)=x^{3}-3 x^{2}-9 x+7$
3) $f^{\prime}(x)=3 x^{2}-6 x-9$

$$
\begin{aligned}
& 3 x^{2}-6 x-9=0+3 \rightarrow x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \longrightarrow x-3=0 \rightarrow x=3 \\
& x+1=0 \longrightarrow x=-1
\end{aligned}
$$

$40 / 3$
（1）$\{x: x \in R, x>3\}$ ك
（2）$\{x: x \in R, x<-1\}$

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}-9 x+7=(3)^{3}-3(3)^{2}-9(3)+7 \quad<x=3 \\
& =27-27-27+7=-20 \quad \therefore(3,-20) \quad \sim \text { 位 } \\
& \text { Ens } \\
& f(-1)=-1-3+9+7=12 \\
& \longleftarrow x=-1 \text { horis } \\
& (-1,12) \text { व位 } \\
& \text { - 奖 }
\end{aligned}
$$

（5）$f(x)=x^{4}-2 x^{2}+1$
$103)$

$$
\begin{aligned}
& f(x)=x-2 x+1 \\
& f^{\prime}(x)=4 x^{3}-4 x \rightarrow 4 x^{3}-4 x=0 \rightarrow 4 x^{3}-x=0 \\
& x\left(x^{2}-1\right)=0 \rightarrow x(x-1)(x+1)=0 \rightarrow x=0 \\
& x=1, x=-1 \quad x<-1-1(-1,0) 0(0,1)-1 \quad x>1
\end{aligned}
$$

$(-1, y) \quad(0, y)$

（1）$\{x: x<-1\}$
（1）$\{x: x>1\}$ 并诸
（2）$(0,1)$
（2）$(-1,0)$

$$
\begin{aligned}
& f(x)=x^{4}-2 x^{2}+1=1-2+1=0<x=1 \text { lesc }
\end{aligned}
$$

$$
\begin{aligned}
& f(0)=0-0+1=1<x=0 \text { b е }
\end{aligned}
$$

$(42) / 3$

$$
f(x)=x^{3}(-4+x)
$$

$$
f(x)=-4 x^{3}+x^{4} \longrightarrow f^{\prime}(x)=-12 x^{2}+4 x^{3}
$$

$$
-12 x^{2}+4 x^{3}=0 \stackrel{\div}{\longrightarrow}-3 x^{2}+x^{3}=0 \xrightarrow{\text { 先通 }} x^{2}(-3+x)=0
$$

$$
x^{2}=0 \rightarrow x=0 \quad, 1-3+x=0 \rightarrow x=3
$$

$\{x$ ，$x \in R: x>3\}$ يِ

（2）$(0,3)$
（7）A O
عنَ
اكِ
$1 \underset{2}{1 〕 2} x$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+a \rightarrow 3 x^{2}+a=0 \rightarrow 3(1)^{2}+a=0 \\
& \quad 3+a=0 \rightarrow a=-3 \\
& \therefore f(x)=x^{3}-3 x+5 \rightarrow f^{\prime}(x)=3 x^{2}-3=0 \\
& 2 x^{2}-3-2-x^{2}=i-i-T_{1}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& =27(-1)=-27 \rightarrow(3,-27)=\frac{1}{2} \\
& \text { - domṕe alir }
\end{aligned}
$$

 ن
105.
$\Longleftarrow x=1$ is \Longleftarrow

$$
f^{\prime}(x)=3 a x^{2}+b \rightarrow 3 a(1)^{2}+b=0
$$

$$
\therefore 3 a+b=0-2
$$

$$
-2=a+b--1
$$

和

$$
\begin{array}{ll}
a=a & =\sqrt{2}-1 \\
-2=1+b & \leftarrow(1) \text { ovoros } a=1 \text { iog } \\
\therefore b=-3 & \text { or }
\end{array}
$$

or

$$
\begin{aligned}
& f(x)=a x^{3}+b x \quad \text { L-N, } 60 \text { Ēड } \\
& -2=a(1)^{3}+b(1) \rightarrow-2=a+b \cdots 1
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{3}-3 x+5 \rightarrow x \rightarrow f(1)=1-3+5=-2+5=3 \text { bovis }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \quad \therefore \\
& f(-1)=(-1)^{3}-3(-1)+5=-1+3+5<x=-1 \text { Lo in } \\
& f(-1)=7 \rightarrow(-1,7) \text { Désquir ab تُ }
\end{aligned}
$$

$(43) / 3$

$$
\begin{aligned}
& f(x)=a x^{3}+b x \quad \leq \text { liege } \leftarrow b=-3, a=1 \\
& f(x)=x^{3}-3 x
\end{aligned}
$$

$$
\therefore f^{\prime}(x)=3 x^{2}-3 \rightarrow 3 x^{2}-3=0 \rightarrow 3 x^{2}=3 \stackrel{+3}{\rightarrow} x^{2}=1
$$

$$
\text { 5. } x=F 1
$$

$$
\text { (2) }\{x: x<-1\}
$$

 $(-1,1)$)

$$
f(x)=x^{3}-3 x=1-3=-2 \quad \longleftarrow x=1 \text { is }
$$

Q a b
(1) (1)
الدوالهالهَ

$$
\text { (a) } f(x)=x^{4}-1
$$

$$
f^{\prime}(x)=4 x^{3} \rightarrow 4 x^{3}=0 \div 4 \rightarrow x^{3}=0 \rightarrow x=0
$$

$$
\begin{aligned}
& f(0)=0-1=-1
\end{aligned}
$$

$$
\begin{aligned}
& f(-1)=(-1)^{3}-3(-1)=-1+3=2 \leqslant \quad x=-1 \text { lous. } \\
& \text { - }
\end{aligned}
$$

$(44) / 3$
（b）

$$
f(x)=x^{3}
$$

$$
\begin{aligned}
& f(x)=x^{3} \\
& f^{\prime}(x)=3 x^{2} \rightarrow 3 x^{2}=0 \rightarrow 3 \rightarrow x^{2}=0 \rightarrow x=0 \\
& x<0+0+ \pm>
\end{aligned}
$$

（2）$\{x: x<0\}$

$$
\therefore P p=d a ́ \sim \geq(0,0)
$$

$$
\longleftarrow f(0)=0 \longleftarrow x=0
$$

（c）
3）

$$
\begin{aligned}
& f^{\prime}(x)=3(x-1)^{2} \cdot 1 \longrightarrow 3
\end{aligned}
$$

$$
3(x-1)^{2}=0 \xrightarrow{+3}\left(\begin{array}{c}
(x-1)^{2}=0 \\
x>1
\end{array}\right.
$$

$$
\therefore x-1=0 \rightarrow x=1
$$

$107)$
（18 $\{x: x>1\}$ م

$$
\text { (2) }\{x: x<1\}
$$

$$
f(1)=0 \& f(1)=(1-1)^{3} \lessdot x=1
$$

$$
\Rightarrow p a d \ddot{0}, \geqslant(1,0)
$$

$$
(d) f(x)=x^{3}-9 x^{2}+24 x
$$

$$
\begin{aligned}
\text { (d) } f(x) & =x^{3}-9 x^{2}+24 x \\
f^{\prime}(x) & =3 x^{2}-18 x+24 \rightarrow 3 x^{2}-18 x+24=0
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow 3 \rightarrow x^{2}-6 x+8=0 \rightarrow(x-4)(x-2)=0 \\
& \therefore<2 \quad(2,4) \quad x>4
\end{aligned}
$$

$$
x=4 \text { of } x=2
$$

$$
\left.(z)^{2} x: x \ll^{2}\right\}
$$

（1）$\{x: x>4\}$ 上ivi＇quelio $(2,4)$ étin ôllis or

$$
\begin{aligned}
& \text { 年 }
\end{aligned}
$$

$(45) / 3$
(e) $8(x) x^{4} 2 x^{2}-3$

$$
f^{\prime}(x)=4 x^{3}-4 x \longrightarrow 4 x^{3}-4 x=0 \xrightarrow{\div 4} x^{3}-x=0
$$

(1) $) \cdot x\left(x^{2}-1\right)=0 \rightarrow x(x-1)(x+1)=0 \rightarrow x=0 x=1 x=-1$

जs (-1, (0, (

$$
(1,-4)
$$

oalúvabór
2ls

$$
f(-1)=-4
$$

\& $x=1$ hosis
=
WU $\dot{\text { ade }}(0,-3)<f(0)=-3$

$$
4 x=-1
$$

$$
\leftrightarrow x=0
$$

$$
=150.6=
$$

有
! اعدادية الجزيرة .V9.0ifith

$$
\begin{aligned}
& f(x)=5+4 x^{3}-x^{4} \\
& f^{\prime}(x)=12 x^{2}-4 x^{3} \rightarrow 12 x^{2}-4 x^{3}=0 \div 4 \rightarrow \\
& 3 x^{2}-x^{3}=0 \rightarrow x^{2}(3-x)=0 \rightarrow x=0 \quad x=3
\end{aligned}
$$

(2) $(0,3)$

vés cuiráa $(3$,

$$
x=3 \rightarrow f(3)=5+4(3)^{3}-(3)^{4}=5+4(27)-81=32
$$

$$
\Longrightarrow d s \text { res atur }=d a ̈(3,32) \therefore
$$

$$
\begin{aligned}
& x=4 \rightarrow f(x)=x^{3}-9 x^{2}+24 x \rightarrow f(4)=(4)^{3}-9(4)^{2}+24(4)! \\
& =64-144+96=80+96=16 \\
& (4,16) \text { aliade } \\
& \text { د9e } \\
& x=2 \rightarrow f(2)=8-36+48=20 \\
& (2,20) \text { (24 - हd }
\end{aligned}
$$

$(46) / 3$
(9)

3

$$
f(x)=3 x^{4}+4 x^{3}
$$

$$
\begin{aligned}
& f(x)=3 x+4 x \\
& f^{\prime}(x)=12 x^{3}+12 x^{2} \rightarrow 12 x^{3}+12 x^{2}=0 \xrightarrow{+12} \\
& x^{3}+x^{2}=0 \rightarrow x^{2}(x+1)=0 \rightarrow x^{2}=0 \rightarrow x=0 \\
& x+1=0 \rightarrow x=-1 \\
& x<-1 \quad(-1,0) \quad x>0
\end{aligned}
$$

$(-1,) \quad(0,)^{\prime}$
vjéa
and
(2) $(-1,0)$

$$
\text { appádos }(0,0) \leftarrow f(0)=0 \quad \longleftarrow \quad \longleftarrow x=0
$$

109)

$$
\begin{aligned}
& b \in R \cup(2,1) \in f(x)=a+(x-b)^{2} \\
& 1=a+(2-b)^{2} \rightarrow 1=a+4-4 b+b^{2} \\
& \because x^{2}-4 b+a+3=0 \cdots(1) \\
& f^{\prime}(x)=2(x-b)=2 x-2 b \Rightarrow 2 x-2 b=0 \div 2 \\
& x-b=0 \rightarrow b=x \Rightarrow b=2
\end{aligned}
$$

T

$$
4-8+a+3=0 \rightarrow-1+a=0 \rightarrow a=1
$$

寝
! ! إدادية الجزبريرة ! .V9.01.71AT

$$
\begin{gathered}
f^{\prime}(x)=a+2 b x \rightarrow a+2 b(1)=0 \\
\therefore a+2 b=0 \cdots 1
\end{gathered}
$$

(1) 1) cx (x) in $a x+b x^{2}>4=3+a(1)+b(1)^{2}$

$$
\begin{gathered}
4=3+a+b \rightarrow a+b=1 \cdots 2 \\
a+2 b=0 \cdots \cdots 1 \\
7 a \mp b=1 \quad \cdots-1 \\
b=-1
\end{gathered}
$$

$$
\begin{aligned}
& a+2(-1)=0 \rightarrow a-2=0 \rightarrow a=2 \\
& \text { |21 } \\
& \stackrel{\infty}{\infty}
\end{aligned}
$$

(1) $f(x)=x^{3}-3 x$
(2) $f(x)=(x-2)^{2}+4$
(3) $f(x)=x^{4}-8 x^{2}+17$
(3) $f(x)=x^{3}-6 x^{2}+9 x-2$
$x=-1$ is adoontir abei $L_{V} f(x)=x^{3}-a x-4$ 玉ils
=لff=avi b'

S($-1,-3$) =dél $a, b \in R=$ =
 (1) $\quad x=2$ is

$$
\left(44^{4} 8\right) / 3
$$

al للم

$$
f^{\prime \prime}(x) \hat{\Gamma} f^{\prime}(x) \text { جن (1) }
$$

$$
x \text { 的家 } f^{\prime \prime}(x)=o(2)
$$

ก
此

ज

111）

- xéi ado (x, y) با

31

册
！إعدادية البزيرا
－24－01－71AT

$$
\begin{aligned}
& f^{\prime}(x)=2 x-4 \rightarrow f^{\prime \prime}(x)=2 \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \text { \&él elór }
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[V]{\stackrel{x+9}{9}+x+} \\
& \text { ol } \\
& (x, y) \\
& \stackrel{\cap(x, y)^{n}}{\stackrel{-\cdots-\cdots}{n}}
\end{aligned}
$$

$$
\begin{aligned}
& =6 \overline{0} \geqslant 3
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{2}-4 x+2
\end{aligned}
$$

$(49) / 3$

$$
\begin{equation*}
f^{\prime}(x)=3 x^{2}-3 \tag{331}
\end{equation*}
$$

$$
f^{\prime \prime}(x)=6 x \rightarrow 6 x=0 \longrightarrow x=0
$$

- 1 foojno loss

$$
\begin{aligned}
f^{\prime \prime}(x) & =6 x \\
& =-6
\end{aligned}
$$

($0, y$)

$$
f^{\prime}(x)=6 x=6
$$

$f(x)=x^{3}-3 x+2$ 玉. $f(0)=0-3(0)+2=2 \rightarrow(0,2)$ نتـن

عَـاريبـن (5)
كلّ هن ال>وال الا
(1) $f(x)=2 x^{2}-4 x+5$

31

$$
f^{\prime}(x)=4 x-4 \rightarrow f^{\prime}(x)=4>0
$$

(2) $f(x)=3 x-x^{3}$

$$
\begin{array}{r}
f^{\prime}(x)=3-3 x^{2} \rightarrow f^{\prime \prime}(x)=-6 x \rightarrow-6 x=0 \rightarrow x=0 \\
f^{\prime \prime}(x)=, 1<0+0,1,0
\end{array}
$$

$$
\leftarrow-x=0
$$

50／3
（3）

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2} \\
& f^{\prime}(x)=3 x^{2}-6 x \rightarrow f^{\prime \prime}(x)=6 x-6 \rightarrow f^{\prime \prime}(x)=0 \\
& 6 x-6=0 \div 6 \rightarrow x-1=0 \rightarrow x=1
\end{aligned}
$$

$\{x: x>1\}$ räl Gelios

$$
\{x: x<1\} \text {, }
$$

$f(x)=x^{3}-3 x^{2} \rightarrow f(1)=(1)^{3}-3(1)^{2}$ $\longleftarrow x=1$ wis
（13）

$$
=1-3=-2
$$

$$
\therefore(1,-2) \text { با با }
$$

（4）$f(x)=x^{5}$
31
$\{x: x \in R, x<0\}$ ，ज़ी

$$
f(x)=x^{5} \rightarrow f(0)=0, \ldots x=0 \text { bis }
$$

ب 人任＝$(0,0)$
童
（5）$f(x)=(x-2)^{3}+3$
 .49 .01 .4157

Generated by CamScanner from intsig．com

$$
\begin{aligned}
& f^{\prime}(x)=3(x-2)^{2} \rightarrow f^{\prime \prime}(x)=6(x-2) \\
& 7^{\prime \prime}=0 \rightarrow 6(x-2)=0 \stackrel{\div}{\longrightarrow} x-2=0 \rightarrow x=2
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=5 x^{4} \rightarrow f^{\prime \prime}(x)=20 x^{3} \rightarrow 20 x^{3}=0 \div 20 \\
& x^{3}=0 \rightarrow x=0
\end{aligned}
$$

$151 / 3$
（6）$f(x)=\frac{1}{4} x^{4}-\frac{3}{2} x^{2}$

$$
\begin{aligned}
& f^{\prime}(x)=4 \cdot \frac{1}{4} x^{3}-2 \cdot \frac{3}{2} x=x^{3}-3 x \\
& f^{\prime \prime}(x)=3 x^{2}-3 \rightarrow 3 x^{2}-3=0 \xrightarrow{2} x^{2}-1=0 \\
& x^{2}=1
\end{aligned}
$$

$$
x^{2}=1>x=\mp 1
$$

$$
\text { c (}-1, \text {) }
$$

（1，）
0
$\{\{x: x \in R, x<-1\}(1)\{x: x \in R, x>1\}$ ， $(-1,1)$－ist जैelio 114

$$
b x=1 \rightarrow f(1)=\frac{1}{4}(1)^{4}-\frac{3}{2}(1)^{2}=\frac{1}{4}-\frac{3}{2}=\frac{-5}{4}
$$

if $x=-1 \rightarrow f(-1)=\frac{-5}{4}-1, y d \lambda_{1} i x>\left(-1, \frac{-5}{4}\right)$ ب $y(x)$ 2ee

$$
\begin{aligned}
& f(x)=x^{3}+3 x^{2}+3 x+1 \\
& f^{\prime}(x)=3 x^{2}+6 x+3 \rightarrow f^{\prime}(x)=6 x+6 \\
& 6 x+6=0 \rightarrow 6 x=-6 \rightarrow x=-1 \quad x>-1 \\
& \{x: x>-1\} \text { 色急 } \\
& \{x: x<-1\} \text {-s, } \\
& \text { if } \left.x=-1 \rightarrow f(-1)=(-1)^{3}+3(-1)^{2}+3(-1)+1 \text { té }\right)_{\text {án }} \\
& =-1+3-3+1=0 \rightarrow(-1,0) \text { yeteree }
\end{aligned}
$$

$52 / 3$
（1）$f(x)=6 x-3 x^{3}$ ज曹
（2）$f(x)=x^{3}(x-4)$
（3）$f(x)=x^{3}-3 x^{2}$
 $a, b \in R$ 气ூーロ $y+4 x+1=0$ ，

$$
f(x)=3 x^{4}-8 x^{3}+6 x^{2}+1
$$

من طِقَ البزاع

Geheratea by Uamscanner trom intsig．com
$(53) / 3$

（ ）＜olu）

= لر N

$$
f^{\prime}(x)=2 x+4
$$

$$
2 x+4=0 \rightarrow 2 x=-4 \xrightarrow{2 \leq} x=-2
$$

$$
\{x: x \in R, x>-2\} \text {. }
$$

$$
\text { siock }(-2,-1)
$$

Generated by CamScanner from intsig．com

$$
\begin{aligned}
& \text { 二釧 }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{2}+4 x+3 \\
& \text { = } 116
\end{aligned}
$$

$$
\begin{align*}
& x=0 \rightarrow f(0)=(0)^{2}+4(0)+3=3 \rightarrow(0,3)=1, \text { Le }\{? \\
& y=f(x)=0 \rightarrow x^{2}+4 x+3=0 \rightarrow(x+3)(x+1)=0 \\
& \text { bi } x=-3 \text { का } x=-1 \rightarrow(-1,0),(-3,0)=\text { 左 } \tag{2}
\end{align*}
$$

$(54)^{3}$

x	$y=f(x)$
0	3
-1	0
-3	0
-2	-1

$(0,3)$ eklorad

$(-3,0)$ होаचа̃न
$(-2,-1)$ is, e a
نفين Dis

(3)

 r-
 تَد
, oil
; <
$55 / 3$

$$
\begin{aligned}
& 2 \int^{3} f(x)=x^{3}-3 x \\
& x=0 \rightarrow f(0)=(0)^{3}-3(0) \\
& \\
& =0-0=0
\end{aligned}
$$

مصالحـ ارسم منحئ الدالم

$$
y=f(x)=0+x^{3}-3 x=0 \xrightarrow[2]{\text { 酋dss }} x\left(x^{2}-3\right)=0
$$

$$
\begin{aligned}
& x=3 \rightarrow x=+v \\
& -\sin 12^{\circ}
\end{aligned}
$$

$$
x=0, x^{2}-3=0 \rightarrow x^{2}=3 \rightarrow x=\mp \sqrt{3}
$$

$$
\begin{equation*}
f^{\prime}(x)=3 x^{2}-3 \longrightarrow 3 x^{2}-3=0 \div 3 \rightarrow \tag{2}
\end{equation*}
$$

$$
x^{2}-1=0 \rightarrow x^{2}=1 \rightarrow x=\mp 1
$$

$$
x<-1, \quad(-1,1)
$$

repórir
（1）$\{x: x \in R, x>1\}=$ 目

$$
\text { (2) }\{x: x \in R, x<-1\}
$$

（ 1,1 ）（1）
Sréain $(1,-2) \longleftarrow f(1)=1-3=-2 \leftarrow x=1$
Nés－ $140(-1,2) \leftarrow f(-1)=-1+3=2 \leftarrow x=-1$

$\{x: x \notin, x<0\}$ ب系

Generated by CamScanner trom intsig.com
$57 / 1 / 2$
$f(x)=(x+1)^{3}-1 \quad$ مثارٌ أرمr منحِن الدالة

$$
\begin{align*}
& x=0 \rightarrow f(0)=(0+1)^{3}-1=1-1=0 \text { eklö, blé } \frac{\text { dJ }}{(1)} \\
& (0,0)=1,6480 \\
& y=f(x)=0 \rightarrow 0=(x+1)^{3}-1 \rightarrow(x+1)^{3}=1 \rightarrow x+1=1 \\
& x=0 \rightarrow(0,0)=\operatorname{li}_{1} \text { <0 } \\
& f^{\prime}(x)=3(x+1)^{2} \rightarrow 3(x+1)^{2}=0 \xrightarrow{-3}(x+1)^{2}=0 \tag{2}\\
& \therefore x+1=0 \rightarrow x=-1
\end{align*}
$$

- (-1,)

$$
\begin{aligned}
& \{x, x \in R, x>-R\} \text { هنا } \\
& \{x: x \in R, x<-1\}-x^{-5} \mid \text { 比. } \\
& f(-1)=(-1+1)^{3}-1<x=-1 \\
& \begin{array}{lll}
=-1 & (-1,-1) \quad-20 \\
y & &
\end{array}
\end{aligned}
$$

$(582 / 3$
（3－6）
بالاتعانة باللفاذل ارسممنحين الدوال
（1）$f(x)=4-6 x-x^{2}$
d 31
（1）
（2）$f^{\prime}(x)=-6-2 x \rightarrow-6=2 x \rightarrow x=-3$

$$
\{x: x \in R, x>-3\} \text { éq管 }
$$

121）

$$
\begin{aligned}
x=-3 \rightarrow f(-3) & =4-6(-3)-(-3)^{2} \\
& =4+18-9=13 \rightarrow(-3,13) \text { i.ered }
\end{aligned}
$$

$$
\begin{aligned}
& \left.x=0 \rightarrow f(0)=4-6(0)-(0)^{2}=4-(0,4)=1,61,6\right) \\
& \begin{aligned}
y & =0 \rightarrow 4-6 x-x^{2}=0 \rightarrow x=\mp \sqrt{13}-3 \text { र齐 chas } \\
& \therefore(\sqrt{13}-3,0) x
\end{aligned}
\end{aligned}
$$

$59 / 3$
（2）$f(x)=3 x-x^{3}$
（1）．$x=0 \rightarrow f(0)=3(0)-(0)^{3}=0 \rightarrow(0,0)=1,0,0$

$$
y=f(x)=0.3 x-x^{3}=0 \rightarrow x\left(3-x^{2}\right)=0 \rightarrow
$$

$$
x=0,3=x^{2} \rightarrow x=\mp \sqrt{3}
$$

$(0,0),(\sqrt{3}, 0),(-\sqrt{3}, 0)$ c侯，
（2）$f^{\prime}(x)=3-3 x^{2} \rightarrow 3-3 x^{2}=0 \rightarrow 3 x^{2}=3 \rightarrow x^{2}=1$
$x<-1$

$$
\therefore x=\mp 1
$$

$(-1,1)$ بِ
जñal Gelío．
（1）$\{x: x>1\}$
（2）$\{x: x<-1\}$

$$
\begin{aligned}
& f(1)=3-1=2 \\
& \text { gés jxi }(1,21 \\
& f(-1)=-3-(-1)=-3+1=-2 \\
& \text { adsore } x=1 \text { vir }(-1,-2)
\end{aligned}
$$

（3）

$$
f^{\prime \prime}(x)=-6 x \rightarrow-6 x=0 \rightarrow x=0
$$

 －包 $\cup_{\text {遂 }}(c, 0) \cap y_{A}$

60/3
(3) $f(x)=(x-1)^{3}$

$$
\begin{aligned}
\text { (1) } \left.x=0 \rightarrow f(0)=(0-1)^{3}=(-1)^{3}=-1 \rightarrow(0,-1)=b l a\right) \\
y=0 \rightarrow(x-1)^{3}=0 \rightarrow x-1=0 \rightarrow x=1 \\
=
\end{aligned}
$$

(2) $f^{\prime}(x)=3(x-1)^{2}$

$$
3(x-1)^{2}=0 \xrightarrow{-3}(x-1)^{2}=0 \rightarrow x=1
$$

(1) $\{x: x \in R, x\rangle 1201 ; i$ céles (2) $\{x \mid x \in R, x<1\}$

(3) $f^{\prime \prime}(x)=6(x-1) \rightarrow 6(x-1)=0 \rightarrow x=1$ $x<1 \quad x>1$
123)

$$
f^{\prime \prime}(x)
$$

$$
\{x: x \in R, x>1\} \text { 位 }
$$

$(1,0)$ cen $f(1)=0$

$$
\{x: x \in R, x<1\}=\text { śláelo }
$$

$$
\longleftarrow \quad x=1
$$

70/3
(4) $f(x)=x^{3}-2 x^{2}+1$
3) (1)

$$
\begin{aligned}
& x=0 \rightarrow f(0)=(0)^{3}-2(0)^{2}+1=1 \\
& y=0 \rightarrow x^{3}-2 x^{2}+1=0 \rightarrow x=1
\end{aligned}
$$

(2) $f^{\prime}(x)=3 x-4 x$ $\rightarrow(0,1)=1,6), 0$

$$
\begin{aligned}
& 3 x^{2}-4 x=0 \rightarrow x(3 x-4)=0 \rightarrow x=0 \\
& 3 x=4 \rightarrow x=\frac{4}{3}
\end{aligned}
$$

$$
\text { (2) }\{x: x \in R, x<0\}
$$

(0, 4

$$
\text { Vésáin }(0,1) \leftarrow y=1 \leftarrow x=0 \text { L us }
$$

$f\left(\frac{4}{3}\right)=\left(\frac{4}{3}\right)^{3}-2\left(\frac{4}{3}\right)^{2}+1=\frac{64}{27}-2\left(\frac{16}{9}\right)+1 \leftarrow x=\frac{4}{3}$ lis $=\frac{-5}{27} \rightarrow\left(\frac{4}{3}, \frac{-5}{27}\right)=5$ se' 'dir
(3) f

$$
\begin{gathered}
f^{\prime \prime}(x)=6 x-4 \rightarrow 6 x-4=0 \rightarrow 6 x=4 \rightarrow x=\frac{\frac{\xi}{6}}{3} \\
x<\frac{2}{3}-\frac{2}{3}, x>\frac{2}{3}
\end{gathered}
$$

$\left(\frac{2}{3}, 1\right.$

$$
f\left(\frac{2}{3}\right)=\left(\frac{2}{3}\right)^{3}-2\left(\frac{2}{3}\right)^{2}+1
$$

$$
<-x=\frac{2}{3}
$$

$$
=\frac{8}{27}-2\left(\frac{4}{9}\right)+1=\frac{8}{27}-\frac{8}{9}+1=\frac{11}{27}
$$

$\therefore\left(\frac{2}{3}, \frac{12}{27}\right) \div$ dél的

$(71) / 3$

125）
一し゚か

（1）$f(x)=\frac{1}{2} x^{2}+x$
（2）$f(x)=3-2 x-x^{2}$
（3）$f(x)=x^{3}-3 x^{2}+2$
（4）$f(x)=x^{5}$
（5）$f(x)=3 x^{2}-x^{3}$
（6）$f(x)=x^{2}-2 x+4$

72／3
 s
？و ，＝ل
［
（fodr
里
2
掘
با

vifan (x, y)
1）h_{0}^{∞}
！$\mu(120) \quad$ 白
y \qquad
 $x=$ 光 -1 נo $y=\omega-b, 0, s$

$$
m=j b-1 \infty
$$

73

127）

保（a）

$y=$ owl seal
$m=$ Lrís Jpls

$x+y=20 \rightarrow y=20-x \rightarrow \approx u s$

$$
\begin{aligned}
& m=x(20-x) \\
& m=20 x-x^{2}
\end{aligned}
$$

चux

$$
\begin{aligned}
& m=x(60-x) \ll l_{1}<x_{1}=x_{1} \text { ieg } \\
& m=60 x-x^{2} \xrightarrow{\text { تn }} m^{\prime}=60-2 x \rightarrow m^{\prime}=0 \\
& 60-2 x=0 \rightarrow 2 x=60 \rightarrow x=30 \\
& y=60-30=30 \quad=\bar{v} x_{0} \geq x=30 \text { ueǵ }
\end{aligned}
$$

$$
\begin{aligned}
& m=x \cdot y \quad * \text { all. } \\
& 120=2(x+y) \leftrightarrows 2 \\
& 60=x+y \rightarrow y=60-x \quad x \text { تैls }
\end{aligned}
$$

$174 / 3$

$$
\begin{aligned}
& m^{\prime}=20-2 x \rightarrow m^{\prime}=0 \rightarrow 20-2 x=0 \rightarrow 20=2 x \\
& \quad x=\frac{20}{2} \rightarrow x=10 \frac{\text { 2.b, }}{\text { Sx, }} y=20-10 \rightarrow y=10
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& h=x^{2}+y^{2} \quad *-d l \\
& y=20-x \quad x=\text { ver } \\
& \therefore h=x^{2}+(20-x)^{2} \\
& h^{\prime}=2 x+2(20-x) x-1=2 x-2(20-x) \\
& 2 x-40+2 x=0 \rightarrow 4 x-40=0 \rightarrow 4 x=40 \\
& x=10 \text { dov, ,el } \\
& y=20-10=10 \quad \text { '́ W, } W_{1}
\end{aligned}
$$

据

129)

$$
\begin{aligned}
& m=2 x y-\frac{1}{2} x^{2} \pi=2 x y-\frac{1}{y_{1}} x^{2} \cdot \frac{212}{7} \\
& m=2 x y-\frac{11}{7} x^{2} \ldots=11 \text {, } \\
& \left.\left(v i 0_{1}\right)+J d l_{1}\right) x=y b-b_{1} b_{-} \\
& \therefore 120=2(2 x+y)-2 \rightarrow 60=2 x+y \\
& \therefore y=60-2 x \text {...-ivls }
\end{aligned}
$$

$$
\begin{aligned}
& m=120 x-4 x^{2}-\frac{11}{7} x^{2} \\
& m^{\prime}=120-8 x-\frac{22}{7} x \rightarrow 120-8 x-\frac{22}{7} x=0(72, \\
& 840-56 x-22 x=0 \rightarrow 840-78 x=0 \rightarrow 840=78 x \\
& \therefore x=\frac{840}{78}=\frac{140}{13} \mathrm{~cm} \\
& \begin{aligned}
\therefore 2 x=2 \cdot \frac{140}{13}=\frac{280}{13} \rightarrow 60-2 x=y & \rightarrow 60-\frac{280}{13} \\
70 & =\frac{500}{13}
\end{aligned}
\end{aligned}
$$

76/3
 ? iكي

s) $x(2-x)=0 \rightarrow x=0$ dor 4 ,e, $x=2<2-x=0$, 1

 qups
 sb'súgِa'ע)

$$
=4 x
$$

$$
v=x^{2} y \rightarrow 864=x^{2} y \rightarrow y=\frac{864}{x^{2}} \text { à } y
$$

Mil

$$
\begin{aligned}
& x=\text { = } \\
& y=\text { = }
\end{aligned}
$$

$$
\begin{aligned}
& 77 / 3 \\
& \therefore h=4 x \frac{864}{x^{2}}+x^{2}=4 x^{-1}(864)+x^{2}=3456 x^{-1}+y \\
& h^{\prime}=-3456 x^{-2}+2 x=\frac{-3456}{x^{2}}+2 x=0 \rightarrow 2 \rightarrow \frac{-1728}{x^{2}}+x=0 \quad x^{2}=1728+x^{3}=0 \\
& \therefore x^{3}=1728 \rightarrow x=12 \mathrm{~m} \\
& \therefore y=\frac{864}{x^{2}}=\frac{864}{(12)^{2}}=\frac{864}{144}=6 \mathrm{~m} \\
& h=4 x y+x^{2}=4(12) \cdot 6+(12)^{2}=432 \mathrm{~m}^{2}
\end{aligned}
$$

131)

=aler运 y

$$
c(x)=\frac{1}{9} x^{2}+6 x+100 \quad 8=8
$$

$$
\begin{aligned}
& A C=\frac{c(x)}{1^{x} x^{2}} \quad=\text {-élt, joe } \\
& A C=\frac{\frac{1^{x} x^{2}+6 x+100}{x}}{x}=\frac{1}{9} x+6+100 x^{-1} \\
& (A C)^{\prime}=\frac{1}{9}-100 x^{-2} \rightarrow(A C)^{\prime}=\frac{1}{9}-\frac{100}{x^{2}}=0 \\
& \frac{\text { luel }=\text { ver, }}{\text { sanevt }} x^{2}=900 \rightarrow x=30
\end{aligned}
$$

$$
\begin{aligned}
& . Y 4+01+\text { FIAT }
\end{aligned}
$$

$78 / 3$
عَارين (7-3)

$$
y=\text { í }
$$

$$
x+y=20 \rightarrow y=20-x \rightarrow-2 \overline{1 s}
$$

$$
m=x y
$$

$$
\text { R } \log \int_{1}=8500
$$

Q．جـر（2）

偣

$$
\begin{aligned}
& m=x-x^{2} \\
& \text { - Norã̌i } \\
& m^{\prime}=1-2 x \rightarrow 1-2 x=0 \\
& 1=:-x \\
& x=\frac{1}{2} \quad, \quad \text {, lpb, , al } \\
& x<\frac{1}{2} \frac{1}{2} \quad x>\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 祘 } \\
& m=x(20-x)=20 x-x^{2} \\
& m^{\prime}=20-2 x \rightarrow 20-2 x=0 \rightarrow 20=2 x \\
& x=10 \rightarrow y=20-10=10
\end{aligned}
$$

79/3

$x=$ =
Vo 35
$y=\dot{\prime} \omega_{1}, \omega_{1}$

$$
\begin{aligned}
& m=(15-x)^{2} \cdot x^{3} \\
& m^{\prime}=(15-x)^{2} \cdot 3 x^{2}+x^{3} \cdot 2(15-x) \cdot-1-2{ }^{2}-2 x \\
& m^{\prime}=3 x^{2}(15-x)^{2}-2 x^{3}(15-x) \\
& m^{\prime}=x^{2}(15-x)[3(15-x)-2 x] \\
& x^{2}(15-x)(45-3 x-2 x)=0 \\
& x^{2}(15-x)(45-5 x)=0
\end{aligned}
$$

$\therefore b^{s} x^{2}=0 \rightarrow x=0$ dr

$$
\begin{aligned}
& \text { gl } 15-x=0 \rightarrow x=15 \text { dre jeéy in } \\
& \text { g' } 45-5 x=0 \rightarrow 45=5 x \rightarrow x=9 \text { doy, ling } \\
& \therefore y=15-9=6 \text { in, }
\end{aligned}
$$

 ¢

$$
y=\dot{s} \omega \prime, \omega_{1}, \quad x=J_{0}, x_{1}, \omega \in
$$

$$
x+y=10 \rightarrow y=10-x \rightarrow x_{5}
$$

$$
m=x^{2} y^{2}, E 10
$$

Generated by CamScanner trom intsig.com

$$
\begin{aligned}
& x+y=15 \rightarrow y=15-x \\
& \text { —— } \\
& m=y^{2} x^{3} \quad=-\dot{y}
\end{aligned}
$$

$80 / 3$

院 (5)
$100 \int$ Oِ
$\lim _{x}^{\text {rin }} y$

$$
\begin{aligned}
& m^{\prime}=x^{2} \cdot 2(10-x) \cdot-1+(10-x)^{2} \cdot 2 x \lll 0 \text { uñon } \\
& m^{\prime}=-2 x^{2}(10-x)+2 x(10-x)^{2} \\
& 2 x(10-x)[-x+(10-x)]=0 \text { (s) } \\
& 2 x(10-x)(-x+10-x)=0 \\
& 2 x(10-x)(-2 x+10)=0 \\
& \text { bi } 2 x=0 \rightarrow x=0 \text { de= }
\end{aligned}
$$

(81)/3

 ? 梌
تُ تُ

虽 (z, els

$$
\therefore m=4 x \cdot y+x^{2} \cdots \bar{a}
$$

$h=x \cdot x \cdot y=x^{2} y$

$$
=4 x
$$

135)

$108=x^{2} y \rightarrow y=\frac{108}{x^{2}}$ जिys

$$
\begin{aligned}
& e_{1} 0, p \times \varepsilon= \\
& -4 x
\end{aligned}
$$

عسَ
$m=4 x \cdot \frac{108}{x^{2}}+x^{2}$
$m=\frac{432}{x}+x^{2} \rightarrow m=432 x^{-1}+x^{2}$
$m^{\prime}=-432 x^{-2}+2 x \rightarrow-\frac{432}{x^{2}}+2 x=0 \quad\left(x^{2}-4\right)^{\prime}$ $-432+2 x^{3}=0 \Rightarrow 2 x^{3}=432$

$$
\left.x^{3}=\frac{432}{2}=216 \rightarrow x=6 m \text { (x) }\right)_{1} \text { fo }
$$

$$
\therefore y=\frac{108}{36}=3 m \quad s^{62,81}
$$

Génerated by Camscanner trom intsig.com
$82 / 3$
नि（m） 4 细
 Euplpر الر الر الر

$$
\begin{aligned}
& v(t)=m^{\prime}=224-32 t \\
& 224-32 t=10 \\
& 224=32 t \rightarrow t=\frac{224}{32}=7
\end{aligned}
$$

 Loris Euple，ا
Tiplqus，cé
\therefore 完m is $t=7$ ieg ＋q．j노ำ

$$
\begin{aligned}
m(7) & =224(7)-16(7)^{2} \\
& =1568-748=784 \mathrm{~m} \text { s自; vés }
\end{aligned}
$$

ا（8）
 \＆الم

$$
\begin{aligned}
& m=2 x y+\frac{1}{2} x^{2} \pi \\
& m=2 x y+\frac{11}{7} x^{2} \rightarrow \text { Ell }
\end{aligned}
$$

$\left.(i,)_{1}+J, b_{1}\right)<=y b_{-}=b_{1}-3$
$8=2(2 x+y) \div 2$
$4=2 x+y \rightarrow y=4-2 x$ in $2 y$

$$
\begin{aligned}
& m=2 x(4-2 x)-\frac{11}{7} x^{2} \\
& m=8 x-4 x^{2}-\frac{11}{7} x^{2}
\end{aligned}
$$

y

$$
\begin{aligned}
& \text { ig } \rho_{1} \times d_{g} b_{1}=4=-6 . \\
& m=2 x y \\
& \pi \tilde{\omega}=\frac{5}{5} h_{1} \text { al } \\
& m=x^{2} \pi \\
& =\text { aslo } \frac{1}{\tau} \text { al. } \\
& =\frac{1}{2} x^{2} \pi \\
& =\frac{1}{7} x^{2} \cdot \frac{112}{7} \\
& =\frac{11}{7} x^{2}
\end{aligned}
$$

（83）

$$
\begin{aligned}
& 32 / 3 \\
& m^{\prime}=8-8 x-\frac{22}{7} x \rightarrow 8-8 x-\frac{22}{7} x=0 \text { (7 } 6-22 x=0 \rightarrow 56-34 x=0 \rightarrow 56=34 x \\
& \therefore x=\frac{56}{34}=\frac{28}{17} \mathrm{~m} \\
& \text { ye-b d, }:=2 x=2 \cdot \frac{28}{17}=\frac{56}{17} \mathrm{~m} \\
& \text { ye-bics } \therefore=y=4-\frac{56}{17}=\frac{68-56}{17}=\frac{12}{17} \mathrm{~m}
\end{aligned}
$$

活的
（27） m^{3} igriel an i

．

137

$$
\begin{aligned}
& \text { q. } 0=c+8 \text { 家, } x_{1} \times 2 \cdot b_{3}= \\
& m=4 x \cdot y+2 x^{2} \\
& \text { むた } \\
& h=x^{2} y \rightarrow 27=x^{2} y \\
& y=\frac{27}{x^{2}} \\
& \text { 二us }
\end{aligned}
$$

$$
\begin{aligned}
m & =4 x \cdot \frac{27}{x^{2}}+2 x^{2} \\
& =\frac{108}{x}+2 x^{2}=108 x^{-1}+2 x^{2} \\
m^{\prime} & =-108 x^{-2}+4 x=\frac{-108}{x^{2}}+4 x
\end{aligned}
$$

20002 $=$＝

$$
\begin{aligned}
& =x^{2} \\
& \text { 2. } \\
& =4 X
\end{aligned}
$$

白白

$$
=x^{2}-y
$$

84／／3

$$
\begin{aligned}
& m^{\prime}=0 \rightarrow \frac{-108}{x^{2}}+4 x=0 \xrightarrow{x^{2}-\dot{y}}-108+4 x^{3}=0 \\
& 4 x^{3}=108 \rightarrow x^{3}=\frac{108}{4}=27 \rightarrow x=3 \mathrm{~m} \text { 䋆叓 } \\
& \therefore y=\frac{27}{(3)^{2}}=\frac{27}{9}=3 \mathrm{~m} \text { \{ájx }
\end{aligned}
$$

 P．iكِ

$$
\begin{aligned}
& A C=\frac{C(x)}{x} \\
& A C=\frac{\frac{1}{2} x^{2}+x+40}{x}=\frac{1}{2} x+1+40 x^{-1} \\
& \frac{d(A C)}{d x}=(A C)^{\prime}=\frac{1}{2}-40 x^{-2}=\frac{1}{2}-\frac{40}{x^{2}}=0 \\
& \therefore \frac{1}{2}=\frac{40}{x^{2}} \xrightarrow{4}(x=\text { und } 9 \\
& \therefore x=4 \sqrt{5}
\end{aligned}
$$

今，eg $4 \sqrt{5}$ q． $\xrightarrow[\rightarrow]{4 \sqrt{5}+t+\rightarrow}$ sieaty

يسـعـد ألـعــودوي

تطلب حصرا من

$\frac{1}{4}$ لبقـ~ الله الرحن الرحبم (4) الすّ
(Integration) الــ

$$
\left.\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \right\rvert\,, n *-1
$$

C الهتص
至
140)
-

$$
\begin{aligned}
& =\frac{x^{3}}{3}+c
\end{aligned}
$$

(2) $\int x^{-2} d x=\frac{x^{-2+1}}{-2+1}+c=\frac{x^{-1}+c}{-1}+c=-\frac{1}{x}+c$
(3) $\int x^{-9} d x=\frac{x^{-8}}{-8}+c=\frac{-1}{8 x^{8}}+c$

$$
\text { (4) } \int x^{99} d x=\frac{x^{100}}{100}+c
$$

(5) $\int x^{\frac{3}{2}} d x=\frac{x^{\frac{3}{2}}+1}{\frac{3}{2}+1}+c=\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+c=\frac{2^{\frac{5}{2}}}{5} x^{2}$
(6) $\int x^{\frac{2}{3}} d x=\frac{x^{\frac{5}{3}}}{\frac{5}{3}}+c=\frac{3}{5} x^{\frac{5}{3}}+c$
(7) $\int x^{\frac{-1}{2}} d x=\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c=2 x^{\frac{1}{2}}$
(8) $\int \frac{1}{x^{2}} d x$

$$
\int x^{-2} d x=\frac{x^{-1}}{-1}+c=\frac{-1}{x}+c
$$

$$
\begin{aligned}
& \text { (9) } \int \frac{1}{x^{-9}} d x=\int x^{9} d x=\frac{x^{10}}{10}+c \\
& \text { (10) } \int \sqrt{x} d x=\int x^{\frac{1}{2}} d x \text { R, } \\
& =\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+c=\frac{2}{3} x^{\frac{3}{2}}+c \\
& \begin{array}{l}
=\frac{x^{2}}{\frac{3}{\frac{3}{2}}}+c=\frac{2}{3} x^{2}+c \\
\left(110 \int^{\frac{1}{\sqrt{x}}} \frac{1}{\sqrt{x^{3}}} \int x^{\frac{-3}{2}} d x=\frac{x^{-\frac{1}{2}}}{\frac{-1}{2}}+c=-2 x^{\frac{-1}{2}}+c\right.
\end{array} \\
& \text { (9) } \int \frac{1}{x^{-9}} d x=\int x^{9} d x=\frac{x^{10}}{10}+c \\
& \text { (10) } \int \sqrt{x} d x=\int x^{\frac{1}{2}} d x
\end{aligned}
$$

$3 / 4$
(12) $\int d x=x+c$
$\int d x=x+c$

$\int d y=y+k$

$$
\int d z=2+c
$$

قَواعد التزال
(1) $\int c f(x) d x=c \int f(x) d x$

صِ
d (5)

(1) $\int 3 x^{2} d x=3 \int x^{2} d x=\frac{-3 x^{3}}{3}+c=x^{3}+c$
a
(2) $\int \frac{-1}{2} x^{5} d x=\frac{-\frac{1}{2} x^{6}}{6}+c=\frac{1}{6} \cdot \frac{-1}{2} x^{5}=\frac{-1}{12} x^{5}$
(3) $\int \sqrt{2} x^{-9} d x=\frac{\sqrt{2} x^{-8}}{-8}+c=\frac{-1}{8} \cdot \sqrt{2} x_{x}^{-8}=\frac{-\sqrt{2}}{8 x^{8}}$
(4) $\int(x+1) d y=(x+1) y+c$ ~UL
(5) $\int(y+2) d x=(y+2) \widehat{x+c}$
x s)
(6) $\int 3 d x=3 x+c$

$$
\text { (7) } \int \frac{-2}{5} d z=\frac{-2}{5} z+c
$$

$4 / 4$
(2)

$$
\int[f(x) \mp g(x)] d x=\int f(x) d x \mp \int g(x) d x
$$

 واعلم

(1)

$$
\begin{aligned}
& \int\left(x^{2}+1\right) d x=\int x^{2} d x+\int d x \\
& =\frac{x^{3}}{3}+x+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \int\left(x^{3}-3 x^{2}+5\right) d x=\frac{x^{4}}{4}-\frac{8 x^{3}}{3}+5 x+c \\
& =\frac{1}{4} x^{4}-\frac{1}{3} x^{3}+5 x+c
\end{aligned}
$$

(3) $\int\left(x^{2}+1\right)(2 x-3) d x$ sixy

$$
\left.=\int 2 x^{3}-3 x^{2}+2 x-3\right) d x
$$

 هُ

$$
=\frac{2 x^{4}}{4 / 2}-\frac{3 x^{3}}{3}+\frac{2 x^{2}}{x^{2}}-3 x+c=\frac{1}{2} x^{4}-x^{3}+x^{2}-3 x+c
$$

(4) $\int\left(\sqrt{x}-\frac{3}{\sqrt[3]{x^{2}}}-1\right) d x$

$$
\begin{aligned}
& =\int\left(x^{\frac{1}{2}}-3 x^{\frac{-2}{3}}-1\right) d x=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{3 x^{\frac{1}{3}}}{\frac{1}{3}}-x+c \\
& =\frac{2}{3} x^{\frac{3}{2}}-9 x^{\frac{1}{3}} x+c=\frac{2}{3} \sqrt{x^{3}}-9 \sqrt[3]{x}+c
\end{aligned}
$$

$5 / 4$

$$
\begin{aligned}
& =\int \frac{x\left(x^{3}-8\right)}{9-2} d x \\
& \int \frac{x-2}{x-2)\left(x^{2}+2 x+4\right)} d x=\int x\left(x^{2}+2 x+4\right) d x \\
& =\int\left(x^{3}+2 x^{2}+4 x\right) d x=\frac{x^{4}}{4}+\frac{2 x^{3}}{3}+\frac{4 x^{2}}{2}+c \\
& =\frac{1}{4} x^{4}+\frac{2}{3} x^{3}+2 x^{2}+c
\end{aligned}
$$

144)

$$
\begin{aligned}
& =\frac{1}{4} x^{4}+\frac{2}{3} x^{3}+2 x^{2}+c \\
& \text { (7) } \int \sqrt{z^{2}+3 z+2} d x \text { N. } \\
& =\sqrt{z^{2}+3 z+2} x+c
\end{aligned}
$$

(3) $\int[y]^{n} \cdot y^{\prime} d x=\frac{[y]^{n+1}}{n+1}+c$ $y=?(x) \approx \sim$ urgiddus ss

(1) $\int\left(x^{2}+1\right)^{3} \cdot 2 x=\frac{\left(x^{2}+1\right)^{4}}{4}+c$ व㖃

6/4

! !عدادية الجزيزرة
(2) $\int\left(x^{2}+1\right)^{3} \cdot x d x$

$$
\begin{aligned}
& =\frac{1}{2} \int\left(x^{2}+1\right)^{3} \cdot 2 x d x \\
& =\frac{\frac{1}{2}\left(x^{2}+1\right)^{4}}{4}+c \\
& =\frac{1}{8}\left(x^{2}+1\right)^{4}+c
\end{aligned}
$$

Oِ
d
-
2x $\quad 3\left(x^{2}+1\right) \quad 2$
is, axopox ci kex 2

(3)

$$
\begin{aligned}
& \int\left(x^{3}+7\right)^{5} \cdot x^{2} d x \\
= & \frac{1}{3} \int\left(x^{3}+7\right)^{5} \cdot 3 x^{2} d x \\
= & \frac{\frac{1}{3}\left(x^{3}+7\right)^{6}}{6}+c \\
= & \frac{1}{18}\left(x^{3}+7\right)^{6}+c
\end{aligned}
$$

$$
43 \text { \& } \operatorname{lin} 33 \leq 6
$$

$$
\text { (4) } \begin{aligned}
& \int \frac{(x-2)}{\left(x^{2}-4 x+5\right)^{2}} d x=\int\left(x^{2}-4 x+5\right)^{-2}(x-2) \\
&=\frac{1}{2} \int\left(x^{2}-4 x+5\right)^{-2} \cdot 2(x-2) d x \\
&=\frac{\frac{1}{2}\left(x^{2}-4 x+5\right)^{-1}}{-1}+c=\frac{-1}{2\left(x^{2}-4 x+5\right)}+c
\end{aligned}
$$

$$
\begin{aligned}
& \int\left(3 x^{3}-5 x^{5}\right)^{\frac{1}{3}} d x=\int\left[x^{3}\left(3-5 x^{2}\right)\right]^{\frac{1}{3}} d x \text { (20) } \sqrt[3]{3} ; x^{2}-4 x^{3} \\
= & \int\left[x^{3}\right]^{\frac{1}{3}}\left(3-5 x^{2}\right)^{\frac{1}{3}} d x=\int\left(3-5 x^{2}\right)^{\frac{1}{3}} \cdot x d x \\
= & \frac{-1}{10} \int\left(3-5 x^{2}\right)^{\frac{1}{3}}-10 x d x=\frac{-1}{10} \frac{\left(3-5 x^{2}\right)^{\frac{4}{3}}}{\frac{4}{3}}=\frac{-3}{40 \sqrt[3]{\left(3-5 x^{2}\right)^{4}}+k}
\end{aligned}
$$

7/4

$$
\begin{aligned}
& \text { (6) } \int \frac{d x}{\sqrt[5]{x^{2}-14 x+49}} \\
& =\int \frac{d x}{\left(x^{2}-1+x+49\right)^{\frac{1}{5}}}=\int\left(x^{2}-14 x+49\right)^{\frac{-1}{5}} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(x-7)^{\frac{3}{5}}}{\frac{3}{5}}+c=\frac{5}{3}(x-7)^{\frac{3}{5}+c}=\frac{5}{3} \cdot \sqrt[5]{(x-7)^{3}+c}
\end{aligned}
$$

(7) $\int \frac{\left(3 x^{2}-4\right)^{2}-16}{x^{2}} d x$
$=\int \frac{\left[\left(3 x^{2}-4\right)-4\right]\left[\left(3 x^{2}-4\right)+4\right]}{x^{2}} d x$
$=\int \frac{\left(3 x^{2}-8\right)\left(3 x^{2}\right)}{x^{2}} d x=\int \frac{\left(3 x^{2}-8\right)\left(3 x^{2}\right)}{x^{2}} d x$
$=\int\left(3 x^{2}-8\right)(3) d x=\int\left(9 x^{2}-24\right) d x=\frac{9 x^{3}}{3}-24 x+c$

$$
=3 x^{3}-24 x+c
$$

(8) $\int \sqrt{x^{4}+x^{2}} d x$

$$
\begin{aligned}
& =\int \sqrt{x^{2}\left(x^{2}+1\right)} d x \\
& =\int \sqrt{x^{2}} \sqrt{x^{2}+1} d x \\
& \frac{1}{2} \int\left(x^{2}+1\right)^{\frac{1}{2}} \cdot 2 x d x=\frac{1}{2^{2}} \frac{\left(x^{2}+1\right)^{\frac{3}{2}}}{\frac{3}{x}}+c=\frac{1}{3}\left(x^{2}+1\right)^{\frac{3}{2}}+c
\end{aligned}
$$

8/4

P0
(1) $\int\left(6 x^{2}-4 x+3\right) d x$

$$
\begin{aligned}
& =\frac{6 x^{3}}{3}-\frac{4 x^{2}}{2}+3 x+c=2 x^{3}-2 x^{2}+3 x+c
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { 2) } \int(3 x-1)(x+5) d x \\
& =\int\left(3 x^{2}+15 x-x-5\right) d x=\frac{3 x^{3}}{3}+\frac{15 x^{2}}{2}-\frac{x^{2}}{2}-5 x+c \\
& =x^{3}+\frac{14 x^{2}}{2}-5 x+c=x^{3}+7 x^{2}-5 x+c
\end{aligned}
$$

(3)

$$
\begin{aligned}
& =\int \sqrt{x}(x+2 \sqrt{x}+1) d x=\int\left(x^{\frac{1}{2}} x+2 x+\sqrt{x}\right) d x \\
& =\int\left(x^{\frac{3}{2}}+2 x+x^{\frac{1}{2}}\right) d x=\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+\frac{2 x^{2}}{2}+\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+c \\
& =\frac{2}{5} x^{\frac{5}{2}}+x^{2}+\frac{2}{3} x^{\frac{3}{2}}+c
\end{aligned}
$$

(4) $\int \frac{x^{3}+27}{x+3} d x$

$$
\begin{aligned}
& =\int \frac{(x+3)\left(x^{2}+3 x+9\right)}{(x+3)} d x=\int\left(x^{2}+3 x+9\right) d x \\
& =\frac{x^{3}}{3}+\frac{3 x^{2}}{2}+9 x+c \\
& =\frac{1}{3} x^{3}+\frac{3}{2} x^{2}+9 x+c
\end{aligned}
$$

9/4
(5)

$$
\begin{aligned}
& \int \frac{x^{3}-2 x^{2}+1}{5 x^{5}} d x=\int \frac{x^{3}}{5 x^{5}}-\frac{2 x^{2}}{5 x^{5}}+\frac{1}{5 x^{5}} d x \\
& =\frac{1}{5} \int\left(\frac{1}{x^{2}}-\frac{2}{x^{3}}+\frac{1}{x^{5}}\right) d x=\frac{1}{5} \int\left(x^{-2}-2 x^{-3}+x^{-5}\right) d x \\
& =\frac{1}{5}\left[\frac{x^{-}}{5}-\frac{2 x^{-2}}{-2}+\frac{x^{-4}}{-4}\right]+c=\frac{1}{5}\left[\frac{-1}{x}+\frac{1}{x^{2}}-\frac{1}{4 x^{4}}\right]+c
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \int \frac{x^{2}+2}{\sqrt[3]{x^{3}+6 x+1}} d x \\
& =\int\left(x^{3}+6 x+1\right)^{\frac{-1}{3}}\left(x^{2}+2\right) d x=\frac{1}{3} \int\left(x^{3}+6 x+1\right)^{\frac{-1}{3}} \cdot 3\left(x^{2}+2\right) d x \\
& =\frac{\frac{1}{3}\left(x^{3}+6 x+1\right)^{\frac{2}{3}}}{\frac{2}{3}}+c=\frac{1}{2} \sqrt[3]{\left(x^{3}+6 x+1\right)^{2}}+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } \int \frac{\sqrt[3]{x^{2}}+2}{\sqrt[3]{x}} d x \\
& =\int x^{\frac{-1}{3}}\left(x^{\frac{2}{3}}+2\right) d x=\int\left(x^{\frac{1}{3}}+2 x^{\frac{-1}{3}}\right) d x \\
& =\frac{x^{\frac{4}{3}}}{\frac{4}{3}}+\frac{2 x^{\frac{2}{3}}}{\frac{2}{3}}+c=\frac{3}{4} x^{\frac{4}{3}}+\frac{3}{7} \cdot x^{\frac{2}{3}}+c
\end{aligned}
$$

$$
\text { (8) } \left.\begin{array}{rl}
& \int \frac{d x}{\sqrt[5]{x^{2}+16 x+64}} \\
= & \int \frac{d x}{\left(x^{2}+16 x+644\right)^{\frac{2}{5}}}
\end{array}=\int\left(x^{2}+16 x+64\right)^{\frac{-1}{5}} d x\right]=\left\{\begin{array}{l}
= \\
= \\
=\frac{5}{3}(x+8)^{\frac{3}{5}}+c
\end{array}\right.
$$

$10 / 4$
(9)

$$
\begin{aligned}
& =\int \sqrt[7]{x^{7}\left(2 x^{2}-3\right)} d x=\int x\left(2 x^{2}-3\right)^{\frac{1}{7}} d x \\
& =\frac{1}{4} \int\left(2 x^{2}-3\right)^{\frac{1}{7}} \cdot 4 x d x=\frac{\frac{1}{4}\left(2 x^{2}-3\right)^{\frac{8}{7}}}{\frac{8}{7}}+c \\
& =\frac{1}{4} \cdot \frac{7}{8}\left(2 x^{2}-3\right)^{\frac{2}{7}}+c=\frac{7}{32} \sqrt{\left(2 x^{2}-3\right)^{8}}+c
\end{aligned}
$$

$(10) \int\left(3 x^{2}+\frac{1}{\sqrt{x}}\right) d x$

$$
=\int\left(3 x^{2}+x^{\frac{-1}{2}}\right) d x=\frac{3 x^{3}}{3}+\frac{\frac{1}{x^{2}}}{\frac{1}{2}}+c=x^{3}+2 \sqrt{x}+c
$$

(11)

$$
\text { 1) } \begin{aligned}
& \int \frac{y d x}{\left(19-2 y^{2}\right)^{\frac{1}{3}}} \\
= & \frac{y}{\left(19-2 y^{2}\right)^{\frac{1}{3}}} x+C
\end{aligned}
$$

जिए
12) $\int \frac{x^{4}-16}{x+2} d x$

$$
\begin{aligned}
& =\int \frac{\left(x^{2}-4\right)\left(x^{2}+4\right)}{x+2} d x=\int \frac{(x-2)(x+2)\left(x^{2}+4\right)}{x+2} d x \\
& =\int\left(x^{3}+4 x-2 x^{2}-8\right) d x=\frac{x^{4}}{4}+\frac{4 x^{2}}{2}-\frac{2 x^{3}}{3}-8 x+c \\
& =\frac{1}{4} x^{4}+2 x^{2}-\frac{2}{3} x^{3}-8 x+c
\end{aligned}
$$

(13) $\int\left(\sqrt[3]{x}-\frac{1}{\sqrt[3]{x}}\right) d x=\int\left(x^{\frac{1}{3}}-x^{\frac{-1}{3}}\right) d x$

$$
=\frac{x^{\frac{4}{3}}}{\frac{4}{3}}-\frac{x^{\frac{2}{3}}}{\frac{2}{3}}+c=\frac{3}{4} \sqrt[3]{x^{4}}-\frac{3}{2} \sqrt[3]{x^{2}}+c
$$

11/4
(14) $\int \sqrt[5]{(1-3 x)^{2}} d x$
$=\int(1-3 x)^{\frac{2}{3}} d x=\frac{-1}{3} \int(1-3 x)^{\frac{2}{3}}-3 d x$
$=\frac{\frac{-1}{3}(1-3 x)^{\frac{5}{3}}}{\frac{5}{3}}+c=\frac{-1}{5} \sqrt[3]{(1-3 x)^{5}}+c$
(15) $\int x^{2} \sqrt{x^{3}+4} d x$
$=\frac{1}{3}\left(x^{3}+4\right)^{\frac{1}{2}} \cdot 3 x^{2}=\frac{1}{3} \frac{\left(x^{3}+4\right)^{\frac{3}{2}}}{\frac{3}{2}}+c=\frac{1}{3} \cdot \frac{2}{3}\left(x^{3}+4\right)^{\frac{3}{7}}+c$ $=\frac{2}{9} \sqrt{\left(x^{3}+4\right)^{3}}+c$
150)

$$
\text { (16) } \begin{aligned}
& \int\left(z^{2} \sqrt{z^{3}}+4\right) d x \\
& =\left(z^{2} \sqrt{z^{3}}+4\right) x+C
\end{aligned}
$$

(
(1) $\int \frac{3 x+12}{(x+4)^{7}} d x$

هِ
(2) $\int \frac{3}{4 x^{2}} d x$
(6) $\int \frac{x^{2}}{\sqrt[5]{5-x^{3}}}$
(3) $\int \frac{(2+3 x) d x}{\sqrt{2-4 x-3 x^{2}}}$
(2) $\int 6 \sqrt{x+1} d x$
(4) $\int \frac{d x}{9-12 x+4 x^{2}}$
(8) $\int \sqrt[3]{4 x^{3}-3 x+1}\left(4 x^{2}-1\right) d x$
(5) $\int \frac{x^{4}-81}{x-3} d x$
(9) $\int \frac{3 x d x}{\sqrt[3]{a^{2}-x^{2}}}$

$$
\begin{aligned}
& \leftarrow \text { (} \\
& y=f(x)=\int f^{\prime}(x) \\
& f(x)=y \text { 次 }
\end{aligned}
$$

$$
y, \underline{L} \cdot \bar{\nu} y^{\prime}
$$

 Generated by CamScanner trom intsig.com
(13/4)
هِ

 Naisidan
उशयक्या, वडा

$$
\therefore y=\int\left(3 x^{2}-2 x+1\right) d x=\frac{3 x^{3}}{3}-\frac{x x^{2}}{2}+x+c
$$

$$
\left(\begin{array}{ll}
\therefore \quad 3 & =(2)^{3}-(2)^{2}+(2)+c \rightarrow 3=8-4+2+c \rightarrow 3=6+c \\
& \therefore c=3-6 \rightarrow c=-3
\end{array}\right.
$$

\Rightarrow.

$$
\therefore y=x^{3}-x^{2}+x-3
$$

$$
\begin{aligned}
& y=\int x \sqrt{x^{2}+9} d x \rightarrow y=\frac{1}{2} \int\left(x^{2}+9\right)^{\frac{1}{2}} 2 x d x \\
& y=\frac{1}{2} \frac{\left(x^{2}+9\right)^{\frac{3}{2}}}{\frac{3}{2}}+c \rightarrow y=\frac{1}{3}\left(x^{2}+9\right)^{\frac{3}{2}}+c \\
& \left.\therefore 7=\frac{1}{3}(0+9)^{\frac{3}{2}}+c \rightarrow 7=\frac{1}{3}(3)^{2}\right)^{\frac{3}{2}}+c \rightarrow 7=\frac{1}{3}(3)^{3}+c \\
& 7=9+c \rightarrow c=-2 \rightarrow y=\frac{1}{3}\left(x^{2}+9\right)^{\frac{3}{2}}-2 \text { und }
\end{aligned}
$$

(14/4)
 UQ

$$
\begin{align*}
& y=\int f^{\prime}(x) \rightarrow y=\int(2 x-4) d x \tag{-3}\\
& y=\frac{2 x^{2}}{2}-4 x+c \rightarrow y=x^{2}-4 x+c
\end{align*}
$$

$(x, y)=$ - c -
 (x, y) is $\mu=\left(0-\frac{1}{1}\right)$ U, $)_{1}$ 鳥 in
© (2)

$$
\begin{aligned}
& y^{\prime}=2 x-4 \\
& \therefore 2 x-4=0 \rightarrow 2 x=4 \rightarrow x=2 \rightarrow(x, y)=(2,-3) \\
& c \text { elsy } y=x^{2}-4 x+c \text { हैe vi } \\
& -3=(2)^{2}-4(2)+c \rightarrow-3=4-8+c \rightarrow-3=-4+c \\
& -3+4=c \rightarrow c=1 \\
& \therefore \sqrt[y=x^{2}-4 x+1]{-3+4} \text { indue }
\end{aligned}
$$

$$
y=\int d x \rightarrow y=\int\left(x^{2}-x-2\right) d x=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2 x+C
$$

(15/4)

$$
\therefore y=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+c
$$

$y=0<0$ (1)
$(x, 0)$ वेäd
 ($0, y$)

$$
\begin{aligned}
& x^{2}-x-2=0 \quad F^{\prime}(x)=a t 1 \quad f^{\prime}(x)=0 \text { is } \\
& \begin{aligned}
(x-2)(x+1) & =0 \xrightarrow{\text { bi }} x-2=0 \rightarrow(x=2) \rightarrow(2,0) \\
& \text { i } x+1=0 \rightarrow x=-1) \rightarrow(-1,0)
\end{aligned}
\end{aligned}
$$

54)

$$
\begin{aligned}
& y=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+c \\
& 0=\frac{1}{3}(-1)^{3}-\frac{1}{2}(-1)^{2}-2(-1)+c \\
& 0=\frac{-1}{3}-\frac{1}{2}+2+c \rightarrow 0=\frac{-2-3+}{6}+c \\
& 0=\frac{+7}{6}+c \rightarrow c=\frac{-7}{6} \\
& \therefore y=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x-\frac{7}{6} \quad(-1)^{3}=-1 \\
& (-1)^{2}=+1
\end{aligned}
$$

(16/4)

$(1,2)$ adail $\frac{d y}{d x} \frac{d y}{d x}=5$
 \%位 $y^{\prime}=\frac{d y}{d x}$ ils $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$ जु [Div 1]

$$
\begin{aligned}
& \therefore y^{\prime}=\int y^{\prime \prime} \rightarrow y^{\prime}=\int\left(1-2 x^{2}-2\right) d x=\frac{12 x^{3}}{3}-2 x+c
\end{aligned}
$$

$5=4(1)^{3}-2(1)+c_{1}$

$$
\begin{aligned}
& 5=4-2+c_{1} \rightarrow c_{1}=3 \rightarrow y^{\prime}=4 x^{3}-2 x+3 \\
& y=\int y^{\prime} \rightarrow y=\int\left(4 x^{3}-2 x+3\right) d x=\frac{4 x^{4}}{4}-\frac{2 x^{2}}{2}+3 x+c_{2} \\
& \therefore y=x^{4}-x^{2}+3 x+c_{2}-\left(\begin{array}{l}
x, y \\
(1,2) \text { ing } c_{2} ~ \& . l
\end{array}\right. \\
& \Sigma=(1)^{4}-(1)^{2}+3(t)+C_{2} \rightarrow 2=1-1+3+C_{2} \rightarrow C_{2}=1 \\
& \text { ss: } y=x^{4}-x^{2}+3 x-1 \rightarrow \text { und, Nibe }
\end{aligned}
$$

(14/4)

(-3)

$$
\begin{aligned}
& y=\int f^{\prime}(x) \xrightarrow{c \mid 1} \\
& y=\frac{2 x^{2}}{Z}-4 x+c \rightarrow y=x^{2}-4 x+c
\end{aligned}
$$

$(x, y)=$ =

© (2)

$$
\begin{aligned}
& y^{\prime}= 2 x-4 \\
& \therefore 2 x-4=0 \rightarrow 2 x=4 \rightarrow x=2 \rightarrow(x, y)=(2,-3) \\
& c \text { ensiy } y=x^{2}-4 x+c \quad \text { 2.e } \\
&-3=(2)^{2}-4(2)+c \rightarrow-3=4-8+c \rightarrow-3=-4+c \\
&-3+4=c \rightarrow c=1 \\
& \therefore y=x^{2}-4 x+1 \text { wh Jue }
\end{aligned}
$$

$$
y=\int d x \rightarrow y=\int\left(x^{2}-x-2\right) d x=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2 x+c
$$

$18 / 4)$

$$
m=\frac{-9}{-1}=9<\frac{x d w}{y \text { vo }}=9<-10
$$

$(1,5)$ is $a x-3 x^{2}=\dot{\sim}$, fo \because

$$
\therefore 9=a(1)-3(1)^{2} \rightarrow 9=a-3 \rightarrow a=12
$$

$y^{\prime}=12 x-3 x^{2}$
que in fos \therefore

$$
\begin{aligned}
& y=\int y^{\prime}=\int 12 x-3 x^{2} d x=\frac{12}{2} x^{2}-\frac{3}{3} x^{3}+c \\
& y=6 x^{2}-x^{3}+c \rightarrow 3(1,5) \text { in } c \text { 2 } c, 1+x \\
& y=6(1)^{2}-(1)^{3}+c \rightarrow 5=6-1+c \rightarrow c=0 \\
& \therefore y=6 x^{2}-x^{3}
\end{aligned}
$$

 $(1,-6)$ (1 ب $\left(a x^{2}\right)$ ($6 x-9$)

' $\mu=$ =

$$
\begin{aligned}
& m=y^{\prime}=a x^{2}-6 x-9 \rightarrow y^{\prime}=2 a x-6 \\
& 2 a x-6=0 \rightarrow 2 a(1)-6=0 \rightarrow 2 a=6-(a=3) \\
& \therefore y^{\prime}=3 x^{2}-6 x-9 \rightarrow y=\int y^{\prime}=\int\left(3 x^{2}-6 x-9\right) d x \\
& y=\frac{3 x^{3}}{3}-\frac{6 x^{2}}{2}-9 x+c \rightarrow y=x^{3}-3 x^{2}-9 x+c \\
& (1,-6) \rightarrow-6=1-3-9+c \rightarrow c=5-3 \\
& y=x^{3}-3 x^{2}-9 x+5=0 \quad \text { indou }
\end{aligned}
$$

$M=\int M^{\prime}=\int\left(8-6 v-2 v^{2}\right) d v$

$$
M=8 v-\frac{6 v^{2}}{2}-\frac{2 v^{3}}{3}+c
$$

$c=0 \Leftarrow M=06 \quad v=0$ q.LV, (

$$
\therefore \Delta\left(0,1, y, 2 l, 2 m=8 v-3 v^{2}-\frac{2}{3} v^{3}\right.
$$

$$
\begin{gathered}
\left.\frac{8 v-3 V^{2}-\frac{2}{3} v^{3}}{V}=\frac{M}{2 v(1) 20}=,-d\right)_{0} \therefore \\
=8-3 V-\frac{2}{3} V^{2}
\end{gathered}
$$

Generated by CamScanner trom intsig.com

20/4)

2
○ $T=65$ 心

عَاربي (2-4)
1 (1) (1)

$$
\begin{aligned}
& y=\int y^{\prime} \rightarrow y=\int-2 x^{-3} d x=\frac{-2 x^{-2}}{-2}+c \\
& y=x^{-2}+c \rightarrow y=\frac{1}{x^{2}}+c \quad(1,3)=(x, y) \rightarrow \\
& 3=\frac{1}{(1)^{2}}+c \rightarrow 3=1+c \rightarrow c=2
\end{aligned}
$$

$$
\therefore y=\frac{1}{x^{2}}+2 \quad \text { vibides }
$$

$$
\begin{aligned}
& T=\int T^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& T=\int\left(2+60 V-5 v^{2}\right) d v=2 V-\frac{60}{2} v^{2}-\frac{5}{3} v^{3}+c \\
& T=2 v-30 v^{2}-\frac{5}{3} v^{3}+c
\end{aligned}
$$

$$
\begin{aligned}
& 65=2(0)-3(0)^{2}-\frac{5}{3}(0)^{3}+c \rightarrow c=65
\end{aligned}
$$

(21/4)
(x, y) من نِ (2)

$$
\begin{array}{lr}
y^{\prime}=3 x^{2}-6 x-9 & x>5-y \quad y=10 \\
3 x^{2}-6 x-9=0 & (\div 3) \quad x-3)(x+1)=0 \\
x^{2}-2 x-3=0 \rightarrow(x-3)
\end{array}
$$

10i $x=3$ को $x=-1$
($-1,10$) (

$$
y=\int y^{\prime}=\int\left(3 x^{2}-6 x-9\right) d x=\frac{3 x^{3}}{3} \frac{6 x^{2}}{2}-9 x+c
$$

$$
\begin{aligned}
& y=x^{3}-3 x^{2}-9 x+c \rightarrow 10=(-1)^{3}-3(-1)^{2}-9(-1)+c \\
& 10=-1-3+9+c \rightarrow 10=5+c \rightarrow c=5 \\
& \therefore y=x^{3}-3 x^{2}-9 x+5
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}=6 x-2 \rightarrow y^{\prime}=\int y^{\prime \prime}=\int(6 x-2) d x \\
& y^{\prime}=\frac{6 x^{2}}{2}-2 x+c_{1} \rightarrow y^{\prime}=3 x^{2}-2 x+c_{1} \quad \begin{array}{l}
y^{\prime}=-1 \\
x=2
\end{array} \\
& \therefore \quad-1=3(2)^{2}-2(2)+c_{1} \rightarrow-1=12-4+C_{1} \rightarrow c_{1}=-9 \\
& y^{\prime}=3 x^{2}-2 x-9 \rightarrow y=\int y^{\prime}=\int\left(3 x^{2}-2 x-9\right) d x \\
& y=\frac{3 x^{3}}{3}-\frac{2 x^{2}}{2}-9 x+C_{2} \rightarrow 5=(2)^{3}-(2)^{2}-9(2)+C_{2} \\
& 5=8-4-18+c_{2} \rightarrow c_{2}=19 \rightarrow y=x^{3}-x^{2}-9 x+19 \quad d_{1}
\end{aligned}
$$

$(22 / 4)$
vis akog ($-1,9$) 6 (4 ($2,-3$)

- $a \in R \leadsto(x, y)$

$$
\begin{align*}
\because y= & \int y^{\prime} \rightarrow y=\int(a x-5) d x=\frac{a x^{2}}{2}-5 x+c \\
\therefore y & =\frac{a}{2} x^{2}-5 x+c \quad(2,-3) \\
-3 & =\frac{a}{2}(2)^{2}-5(2)+c \rightarrow-3=2 a-10+c \\
\therefore 9 & =\frac{a}{2}(-1)^{2}-5(-1)+c \quad 7=2 a+c \\
9 & =\frac{a}{2}+5+c \rightarrow 1 \\
7 & =2 a+d
\end{align*}
$$

bell $74=\frac{-a}{2}=/ c$ - (2)

$$
\begin{aligned}
3 & =2 a-\frac{a}{2} \xrightarrow{2 \cdot 3} \\
6 & =3 a \rightarrow a=2 a \cdot 2-2 \cdot \frac{a}{2} \rightarrow 6=4 a-a \\
7 & =2(2)+c \rightarrow 7=4+c \rightarrow c=3 \\
\therefore y & =\frac{a}{2} x^{2}-5 x+c \rightarrow y=\frac{2}{2} x^{2}-5 x+3 \\
y & =x^{2}-5 x+3 \quad \text { (1) }
\end{aligned}
$$

$$
M^{\prime}=12-8 v+v^{2} 89,-31 \text { إ }
$$

$$
\begin{aligned}
& M=\int M^{\prime}=\int\left(12-8 V+V^{2}\right) d V \\
& M=12 V-\frac{8}{2} V^{2}+\frac{V^{3}}{3}+C \\
& \text { eratea by camscanner trom intsig.com }
\end{aligned}
$$

者 ! .19 .01 .7717
$(23 / 4)$

$$
\therefore M=12 v-4 V^{2}+\frac{v^{3}}{3}+C
$$

$0=0-0+0+C<M=0, V=0$ q. 2 有

$$
\therefore c=0
$$

$$
150=5
$$

(62)

3

$$
\begin{aligned}
& \left.T=\int(1000)-5 V\right) d V \\
& T=1000 V-\frac{5}{2} V^{2}+C
\end{aligned}
$$

$$
\begin{aligned}
& 150=1000(0)-\frac{5}{2}(0)^{2}+c \rightarrow c=150 \\
& \therefore T=1000 V-\frac{5}{2} V^{2}+150 \quad \text { atmidl, } \\
& \therefore T=1000 V-\frac{5}{2} V^{2}+150 \underbrace{\text { and }}_{-1501} \\
& \text { Cols }
\end{aligned}
$$

$$
\begin{aligned}
& T=\int T^{\prime}
\end{aligned}
$$

(24/4)
The Definite integral $3 \leq 5!$ Jolil

$F(x)$ 任 $\because F^{\prime}(x)=f(x)$ 仡 $f(x)=\vec{a}$

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-f(a)
$$

(1) $\int_{1}^{2} x d x=\left[\frac{x^{2}}{2}\right]_{1}^{2}=\left[\frac{(2)^{2}}{2}\right]\left[\frac{(1)^{T}}{2}\right]=2-\frac{1}{2}=\frac{3}{2}$ atpol
2) $\int_{1}^{2}\left(3 x^{2}+2 x-2\right) d x=\left[\frac{3 x^{3}}{3}+\frac{2 x^{2}}{2}-2 x\right]_{1}^{2}=\left[x^{3}+x^{2}-2 x\right]_{1}^{2}$

$$
=\left[(2)^{3}+(2)^{2}-2(2)\right]-\left[(1)^{3}+(1)^{2}-2(1)\right]=[8]-0=8
$$

(2) $\int_{0}^{3} \frac{2 x}{\sqrt{x^{2}+16}} d x=\int_{0}^{3}\left(x^{2}+6\right)^{\frac{-1}{2}} \cdot 2 x d x$ indint

$$
\begin{aligned}
& =\left[\frac{\left(x^{2}+16\right)^{\frac{1}{2}}}{\frac{1}{2}}\right]_{0}^{3}=2\left[\sqrt{\left(x^{2}+16\right)}\right]_{0}^{3}=2[\sqrt{x+16}-\sqrt{0+16}] \\
& =2[5-4]=2[1]=2
\end{aligned}
$$

$(23 / 4)$
(3) \int_{4}^{1}
fork,

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\
\therefore & =-\int_{0}^{4}\left(x^{2}-x\right)(x-2) d x=-\int_{0}^{4}\left(x^{3}-2 x^{2}-x^{2}+2 x\right) d x \\
= & -\int_{0}^{4}\left(x^{3}-3 x^{2}+2 x\right) d x=-\left[\frac{x^{4}}{4}-\frac{3 x^{3}}{3}+\frac{2 x^{2}}{2}\right]_{0}^{4} \\
= & -\left[\left[\frac{(4)^{4}}{4}-\frac{3(4)^{3}}{3}+\frac{2(4)^{2}}{2}\right]-\left[\frac{0}{4}-\{0)+0\right]\right)=-[64-64+16]=-11
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) } \int_{1}^{125} \frac{\sqrt{\sqrt[3]{x}-1}}{\sqrt[3]{x^{2}}} d x=\int_{1}^{125} \frac{\left(x^{\frac{1}{3}}-1\right)^{\frac{1}{2}}}{x^{\frac{3}{2}}} d x \\
& =\int_{1}^{125}\left(x^{\frac{1}{3}}-1\right)^{\frac{1}{2}} \cdot x^{\frac{-3}{2}} d x \\
& =3 \int_{1}^{\frac{1}{3} x^{-\frac{2}{3}}}\left(x^{\frac{1}{3}-1}-1\right)^{\frac{1}{3}} \cdot \frac{1}{3} x^{\frac{-3}{2}} d x=\left[\frac{3\left(x^{\frac{1}{3}}-1\right)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{125} \\
& =2\left[\sqrt{(\sqrt[3]{x}-1)^{3}}\right]_{1}^{125}=2\left[\sqrt{\sqrt[3]{125}-1)^{3}}-\sqrt{\sqrt[3]{1}-1}\right] \\
& =2\left[\sqrt{(4)^{3}} \sqrt{1-1}\right]=2[\sqrt{64}-0]=2[8] \\
& =16
\end{aligned}
$$

26/4
(5)

$$
\begin{aligned}
& \int_{1}^{4}\left(\frac{1}{\sqrt{x}}+\sqrt{x}\right) d x=\int_{1}^{4}\left(x^{\frac{-1}{2}}+x^{\frac{1}{2}}\right) d x \\
& =\left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4}=\left[2 \sqrt{x}+\frac{2}{3} \sqrt{x^{3}}\right]_{1}^{4} \\
& =\left[2 \sqrt{4}+\frac{2}{3} \sqrt{4^{3}}\right]-\left[2 \sqrt{1}+\frac{2}{3} \sqrt{(1)^{3}}\right]=\left[4+\frac{2}{3}(8)\right]-\left[2+\frac{2}{3}\right] \\
& =\left[4+\frac{16}{3}\right]-\left[\frac{8}{3}\right]=\left[\frac{28}{3}-\frac{8}{3}\right]=\frac{20}{3}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
31 & \int_{0}^{3}(2 x-1) d x
\end{array}=42 \rightarrow\left[\frac{2 x^{2}}{2}-x\right]_{0}^{a}=42\right\}
$$

$\begin{array}{rl}(a-7)(a+6)=0 \rightarrow|6| ~ & a=7 \text {, } a=-6 d r\end{array}$

$$
\int_{0}^{-6} j z_{y} y u^{\prime} x_{1} \dot{y}
$$

$$
\text { 7) } \int_{-6}^{-5} \sqrt[3]{x^{2}+12 x+36} d x
$$

$$
\begin{aligned}
& =\int_{-6}^{-6} \sqrt[3]{(x+6)^{2}} d x=\int_{-6}^{-5}(x+6)^{\frac{2}{3}} d x=\left[\frac{(x+6)^{\frac{5}{3}}}{\frac{5}{3}}\right]_{-6}^{-5} \\
& =\frac{3}{5}\left[(x+6)^{\frac{5}{3}}\right]_{-6}^{-5}=\frac{3}{5}\left[(-5+6)^{\frac{5}{3}}(-6+6)^{\frac{5}{3}}\right] \\
& =\frac{3}{5}[1-0]=\frac{3}{5}
\end{aligned}
$$

(1) $\int(2 x+5)(x+1) d x$ جدك

$$
\begin{aligned}
& =\int\left(2 x^{2}+2 x+5 x+5\right) d x=\int\left(2 x^{2}+7 x+5\right) d x \\
& =\frac{2 x^{3}}{3}+\frac{7 x^{2}}{2}+5 x+C=\frac{2}{3} x^{3}+\frac{7}{2} x^{2}+5 x+C
\end{aligned}
$$

(2)

$$
\text { 2) } \begin{aligned}
& \int_{-1}^{1}\left(x^{2}+3(x-2) d x\right. \\
& =\int_{-1}^{1}\left(x^{3}-2 x^{2}+3 x-6\right) d x=\left[\frac{x^{4}}{4}-\frac{2 x^{3}}{3}+\frac{3 x^{2}}{2}-6 x\right]_{-1}^{1} \\
& =\left[\frac{1}{4}-\frac{2}{3}+\frac{3}{2}-6\right]-\left[\frac{1}{4}+\frac{2}{3}+\frac{3}{2}+6\right]=\frac{-2}{3}-\frac{2}{3}-6-6 \\
& =\frac{-4}{3}-1 \cdot 2=\frac{-4-36}{3}=\frac{-40}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \int \sqrt{x(\sqrt{x}+5)} d x=\int\left(x+5 x^{\frac{1}{2}}\right) d x \\
& \begin{array}{l}
=\frac{x^{2}}{2}+\frac{5 x^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{1}{2} x^{2}+\frac{10}{3} \sqrt{x^{3}}+C \\
\int_{0}^{4} \sqrt{x}(x+1)^{2} d x
\end{array} \\
& =\int_{0}^{4} x^{\frac{1}{2}}\left(x^{2}+2 x+1\right) d x=\int_{0}^{4}\left(x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+x^{\frac{1}{2}}\right) d x \\
& =\left[\frac{x^{\frac{7}{2}}}{\frac{\frac{7}{2}}{2}}+\frac{2 x^{\frac{5}{2}}}{\frac{5}{2}}+\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4}=\left[\frac{2}{7} x^{\frac{7}{2}}+\frac{2}{5} \cdot 2 x^{\frac{5}{2}}+\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{4}
\end{aligned}
$$

28/4

$$
\begin{aligned}
& =\left[\frac{2}{7}\left[(2)^{2}\right]^{\frac{2}{2}}+\frac{4}{5}\left[(2)^{2}\right]^{\frac{5}{2}}+\frac{2}{3}\left[(2)^{2}\right]^{\frac{3}{2}}\right]-[0] \\
& =\frac{2}{7}(128)+\frac{4}{5}(32)+\frac{2}{3}(8)=\frac{7088}{105}
\end{aligned}
$$

(5) $\int \sqrt{x}(\sqrt{x}+2)^{2} d x$
$=\int x^{\frac{1}{2}}\left(x+4 x^{\frac{1}{2}}+4\right) d x=\int\left(x^{\frac{3}{2}}+4 x+4 x^{\frac{1}{2}}\right) d x$

$$
=\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+\frac{4 x^{2}}{2}+\frac{4 x^{\frac{3}{2}}}{\frac{3}{2}}+c=\frac{2}{5} \sqrt{x^{5}}+2 x^{2}+\frac{8}{3} \sqrt{x^{3}}+c
$$

(6) $\int_{-1}^{0} \frac{x^{3}-27}{x-3} d x$

$$
\begin{aligned}
& =\int_{-1}^{0} \frac{(x-3)\left(x^{2}+3 x+9\right)}{(x+3)} d x=\left[\frac{x^{3}}{3}+\frac{3 x^{2}}{2}+9 x\right]_{-1}^{0} \\
& =[0]-\left[\frac{-1}{3}+\frac{3}{2}-9\right]=-\left[\frac{-2+9-54}{6}\right]=-\left[\frac{-47}{6}\right]=\frac{42}{6}
\end{aligned}
$$

(7) $\int \frac{x^{4}-1}{x-1} d x=\int \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x-1} d x$

$$
\begin{aligned}
& =\int \frac{(x-1)(x+1)\left(x^{2}+1\right)}{x-1} d x=\int\left(x^{3}+x+x^{2}+1\right) d x \\
& =\frac{x^{4}}{4}+\frac{x^{2}}{2}+\frac{x^{3}}{3}+x+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (8) } \int_{0}^{1} \frac{x d x}{\sqrt{x^{2}+1}}=\frac{1}{2} \int_{0}^{1}\left(x^{2}+1\right)^{\frac{-1}{2}} \cdot 2 x d x \\
& \left.=\left[\frac{1}{2} \frac{\left(x^{2}+1\right.}{\frac{1}{2}}\right)^{\frac{1}{2}}\right]_{0}^{1}=\sqrt{(1+1)}-\sqrt{1}=\sqrt{2}-1
\end{aligned}
$$

29/4

$$
\begin{aligned}
& \int \frac{x^{2}+1}{\sqrt[3]{x^{3}+3 x+1}}=\int\left(x^{3}+3 x+1\right)^{\frac{-1}{3}}\left(x^{2}+1\right) \\
& =\frac{1}{3} \int\left(x^{3}+3 x+1\right)^{\frac{-1}{3}} \cdot 3\left(x^{2}+1\right)=\frac{\frac{1}{2}\left(x^{3}+3 x+1\right)^{3}}{\frac{2}{3}}+c
\end{aligned}
$$

$=\frac{1}{2} \sqrt[3]{\left(x^{3}+3 x+1\right)^{2}}+C$

$$
\begin{aligned}
& \text { (10) } \int_{0}^{3} \sqrt[3]{(3 x-1)^{2}} d x \\
& =\frac{1}{3} \int_{0}^{3}(3 x-1)^{\frac{2}{3}} \cdot 3 d x=\left[\frac{1}{3} \frac{(3 x-1)^{\frac{5}{3}}}{\frac{5}{3}}\right]_{0}^{3}=\frac{1}{5}\left[(3 x-1)^{\frac{5}{3}}\right]_{0}^{3} \\
& \left.=\frac{1}{5}\left[(8)^{\frac{5}{3}}-(-1)^{\frac{5}{3}}\right]=\frac{1}{5}\left[(2)^{3}\right]^{\frac{5}{3}}+1\right]=\frac{1}{5}[32+1]=\frac{33}{5}
\end{aligned}
$$

$168)$

$$
\begin{aligned}
& \text { (11) } \int \frac{\sqrt[3]{x}+1}{\sqrt[3]{x^{2}}} d x \\
& =\int x^{\frac{-2}{3}}\left(x^{\frac{1}{3}}+1\right) d x=\int\left(x^{\frac{-1}{3}}+x^{\frac{-2}{3}}\right) d x \\
& =\frac{x^{\frac{2}{3}}}{\frac{2}{3}}+\frac{x^{\frac{1}{3}}}{\frac{1}{3}}+c=\frac{3}{2} \sqrt[3]{x^{2}}+3 \sqrt[3]{x}+c \\
& \text { (12) } \int \frac{\sqrt[3]{\sqrt{x}-1}}{\sqrt{x}} d x \\
& =\int\left(x^{\frac{1}{2}}-1\right)^{\frac{1}{3}} ; x^{\frac{-1}{2}}=2 \int\left(x^{\frac{1}{2}}-1\right)^{\frac{1}{3}} \cdot \frac{1}{2} x^{\frac{-1}{2}} d x \\
& =\frac{2\left(x^{\frac{1}{2}}-1\right)^{\frac{4}{3}}}{\frac{4}{3}}+C=\frac{3}{2} \sqrt[3]{(\sqrt{x}-1)^{4}}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { 13) } \int_{10 / 4}^{\sqrt[5]{a^{2} x^{5}+b^{2}}} d x=\int^{4}\left(a^{2} x^{5}+b^{2}\right)^{\frac{-1}{5}} x^{4} d x \\
& =\frac{1}{5 a^{2}} \int_{\left(a^{2} x^{5}+b^{2}\right)^{-\frac{1}{5}} \cdot 5 a^{2} x^{4} d x}^{5 a^{2} x^{4}} \\
& =\frac{\frac{1}{5 a^{2}}\left(a^{2} x^{5}+b^{2}\right)^{\frac{4}{5}}}{\frac{4}{5}}+C=\frac{1}{4 a^{2}} \sqrt[5]{\left(a^{2} x^{5}+b^{2}\right)^{4}}+C \\
& (14) \int_{0}^{8} \sqrt{x^{2}-14 x+49} d x \\
& =\int_{0}^{8} \sqrt{(x-7)^{2}} d x=\int_{0}^{8}(x-7) d x=\left[\frac{x^{2}}{2}-7 x\right]_{0}^{3} \\
& =[32-54]-0=-22
\end{aligned}
$$

(15) $\int \frac{d x}{4 x^{2}-12 x+9}$

$$
\begin{aligned}
& =\int \frac{d x}{(2 x-3)^{2}}=\int(2 x-3)^{-2} d x=\frac{1}{2} \int(2 x-3)^{-2} \cdot 2 d x \\
& =\frac{\frac{1}{2}(2 x-3)^{-1}}{-1}+C=\frac{-1}{2(2 x-3)}+C=\frac{-1}{4 x-6}+C
\end{aligned}
$$

(1.6)

$$
\begin{aligned}
& \int_{-1}^{1} \sqrt[5]{3 x^{5}-2 x^{7}} d x \\
& =\int_{-1}^{1} \sqrt[5]{x^{5}\left(3-2 x^{2}\right)} d x
\end{aligned}
$$

(3)
$31 / 4$

$$
\begin{aligned}
& 31 / 4 \\
& =\int_{-1}^{1} \sqrt[5]{x^{5}} \sqrt[5]{3-2 x^{2}} d x=\int_{-1}^{1}\left(3-2 x^{2}\right)^{\frac{1}{5}} x d x \\
& =\frac{-1}{4} \int_{-1}^{1}(3-2 x)^{2} \cdot \frac{1}{5} \cdot 4 x d x \\
& =\left[\frac{-1}{4} \frac{\left(3-2 x^{2}\right)^{\frac{6}{5}}}{\frac{6}{5}}\right]_{-1}^{1}=\frac{-5}{24}\left[(3-2)^{\frac{6}{5}}-(3-2)^{\frac{6}{5}}\right]=\frac{-5}{24}[0]=0
\end{aligned}
$$

(17) $\int \sqrt[3]{2 x^{5}-7 x^{3}} d x$
$=\int \sqrt[3]{x^{3}\left(2 x^{2}-7\right)} d x=\int \sqrt[3]{x^{3}} \sqrt[3]{2 x^{2}-7} d x$ $=\int\left(2 x^{2}-7\right)^{\frac{1}{3}} \cdot x=\frac{1}{4} \int\left(2 x^{2}-7\right)^{\frac{1}{3}} \cdot 4 x d x$

$$
=\frac{\frac{1}{4}\left(2 x^{2}-7\right)^{\frac{4}{3}}}{\frac{4}{3}}+C=\frac{3}{16} \sqrt[3]{\left(2 x^{2}-7\right)^{4}}+C
$$

. 3^{2} old 5 jil

- sg Jslong sjel

$32 / 4$
المساحت تت المنحني
(1) (1)

=0

(

$$
A=\left|\int_{a}^{c} f(x) d x\right|+\left|\int_{c}^{b} f(x) d x\right|
$$

$$
A=A_{1}+A_{2}
$$

Generateâ by Camscanner trom intsig.com

33/4
0, م, $f(x)=x^{2}-2 x-3$ को \& $[-1,3]=0$,)

$$
f(x)=0 \rightarrow x^{2}-2 x-3=0 \rightarrow(x-3)(x+1)=0
$$

$$
\operatorname{Lel}^{5} x+3=0 \rightarrow x=3 \in[-1,3]
$$

5
3
3
3
3
3
3
3
3
3
3
3
3

$$
\text { or } x=-1 \in[-1,3]
$$

172.

(עجْزُ

$$
\begin{aligned}
\therefore & A
\end{aligned}=\left|\int_{-1}^{3}\left(x^{2}-2 x-3\right) d x\right|=\left|\left[\frac{x^{3}}{3}-\frac{2 x^{2}}{2}-3 x\right]^{3}\right|
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
f(x)=0 \rightarrow x^{3}-x=0 \rightarrow x\left(x^{2}-1\right)=0 \\
x(x-1)(x+1)=0 \rightarrow x=0: x=1 r x=-1
\end{array} \\
& \therefore A=\left|\left.\right|_{-1} ^{0}\left(x^{3}-x\right) d x\right|+\left|\int_{0}^{1}\left(x^{3}-x\right) d x\right| \\
& \\
& =\left\lvert\,\left[\frac{\left.x^{4}:-\frac{x^{2}}{2}\right]_{-1}^{0}\left|+\left|\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]_{0}^{1}\right|\right.}{\text { A1 }}\right.\right.
\end{aligned}
$$

$341 / 4$

$$
\begin{aligned}
A & =\left|(0)-\left(\frac{(1)^{4}}{4}-\frac{(-13}{2}\right)\right|+\left|\left(\frac{1)^{4}}{4}-\frac{(1)^{2}}{2}\right)-(0)\right| \\
& \left.=\left|-\left(\frac{1}{4}-\frac{1}{2}\right)\right|+\left|\frac{1}{4}-\frac{1}{2}\right|=\left|\frac{1}{4}\right|+\left|\frac{-1}{4}\right|=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \right\rvert\,
\end{aligned}
$$

（2）المساقت بين منحني 2 التهن
㲀 ن
（1）的

$$
R(x)=f(x)-g(x)
$$

$$
\begin{equation*}
A=\left|\int_{a}^{b} R(x) d x\right| \tag{2}
\end{equation*}
$$

 هـود التजا

准

$$
y=g(x)=x^{3}, \quad y=f(x)=x
$$

$$
\begin{aligned}
& R(x)=x-x^{3} \\
& R(x)=0 \rightarrow x-x^{3}=0 \rightarrow x\left(1-x^{2}\right)=0 \\
& l_{0}^{1} \mid x=0 \text { of } 1-x^{2}=0 \rightarrow x^{2}=1 \rightarrow x=\mp 1 \\
& A=\left|\int_{-1}^{0}\left(x-x^{3}\right) d x\right|+\left|\int_{0}^{1}\left(x-x^{3}\right) d x\right|_{1}^{1}
\end{aligned}
$$

$35 / 4$

$$
\begin{aligned}
A & =\left|\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{-1}^{0}\right|+\left|\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1}\right| \\
& =\left|(0)-\left(\frac{1}{2}-\frac{1}{4}\right)\right|+\left|\left(\frac{1}{2}-\frac{1}{4}\right)-(0)\right|=\left|-\left(\frac{1}{4}\right)\right|+\left|\frac{1}{4}\right|=\frac{1}{2}
\end{aligned}
$$

$[-1,1]$ ain, itr, $y=f(x)=x$ if

$$
[-1,1] \quad \text { ari, } 3<, y=g(x)=\sqrt[3]{x}
$$

$$
\begin{aligned}
& R(x)=x-\sqrt[3]{x} \rightarrow R(x)=0 \\
& x-\sqrt[3]{x}=0 \rightarrow x=\sqrt[3]{x} \xrightarrow{4} \text {) } b|l| x^{3}=x \\
& x^{3}-x=0 \rightarrow x\left(x^{2}-1\right)=0 \rightarrow x(x-1)(x+1)=0
\end{aligned}
$$

bi $x=0 \in[-1,1]$ or $x=1 \in[-1,1]$ or $x=-1 \in[-1,1]$
(174)

$$
\begin{aligned}
A & =\left|\int_{-1}^{0}\left(x-x^{\frac{1}{3}}\right) d x\right|+\left|\int_{0}^{1}\left(x-x^{\frac{1}{2}}\right) d x\right| \frac{x_{1}}{-1} A_{1}^{A_{2}} \\
& =\left|\left[\left(\frac{x^{2}}{2}-\frac{x^{3}}{\frac{4}{3}}\right)\right]_{-1}^{0}\right|+\left|\left[\frac{x^{2}}{2}-\frac{x^{\frac{4}{3}}}{3}\right]_{0}^{1}\right| \\
& =\left|(0)-\left(\frac{1}{2}-\frac{3}{4}\right)\right|+\left|\left(\frac{1}{2}-\frac{3}{4}\right)-(0)\right| \\
& =\left|-\left(\frac{-1}{4}\right)\right|+\left|\frac{-1}{4}\right|=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \text { unit }^{2}
\end{aligned}
$$

36/4
(4-4)

$$
\begin{aligned}
& y=f(x)=x^{3}-4 x \text { ن } x=-2 \text { i } x=2 \\
& f(x)=0 \rightarrow x^{3}-4 x=0 \xrightarrow{\prime \prime \prime} x\left(x^{2}-4\right)=0 \\
& x(x-2)(x+2)=0 \rightarrow \text { bil } x=0 \in[-2,2]
\end{aligned}
$$

$$
\text { or } x=2 \in[-2,2] \text { or } x=-2 \in[-2,2]
$$

or $x=1, x=-1 \in[-1,1]$

$$
\begin{aligned}
& \therefore A=A_{1}+A_{2} \\
& \begin{aligned}
A & =\left|\int_{-1}^{0}\left(x^{4}-x^{2}\right) d x\right|+\left|\int_{0}^{1}\left(x^{4}-x^{2}\right) d x\right| \\
& =\left|\left[\frac{x^{5}}{5}-\frac{x^{3}}{3}\right]_{-1}^{0}\right|+\left|\left[\frac{x^{5}}{5}-\frac{x^{3}}{3}\right]_{0}^{1}\right|
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore A=\left|\int_{-2}^{0}\left(x^{3}-4 x\right) d x\right|+\left\lvert\, \int_{0}^{2}\left(x^{3}-4 x\right) d x \frac{A_{1}}{-2}\right., \frac{A z}{2} \\
& =\left|\left[\frac{x^{4}}{4}-\frac{4 x^{2}}{2}\right]_{-2}^{0}\right|+\left|\left[\frac{x^{4}}{4}-2 x^{2}\right]_{0}^{2}\right| \\
& =|(0)-(4-8)|+|(4-8)-0|=|4|+|-4|=4+4=8 \text { cunit }^{2} \\
& \text { 3, } y=f(x)=x^{4}-x^{2} \dot{\sum} \| \text { 促 } \\
& [-1,1]=-i), 3<, \\
& y=0 \rightarrow x^{4}-x^{2}=0 \rightarrow x^{2}\left(x^{2}-1\right)=0 \\
& x^{2}(x-1)(x+1)=0 \rightarrow b^{5} x^{2}=0 \rightarrow x=0 \in[-1,1]
\end{aligned}
$$

37/4

$$
\begin{aligned}
A & =\left|(0)-\left(\frac{-1}{5}-\frac{-1}{3}\right)\right|+\left|\left(\frac{1}{5}-\frac{1}{3}\right)-(0)\right| \\
& =\left|-\left(\frac{-1}{5}+\frac{1}{3}\right)\right|+\left|\frac{3-5}{15}\right|=\left|\frac{1}{5}-\frac{1}{3}\right|+\left|\frac{-2}{15}\right| \\
& =\left|\frac{3-5}{15}\right|+\left|\frac{-2}{15}\right|=\left|\frac{-2}{15}\right|+\left|\frac{-2}{15}\right|=\frac{2}{15}+\frac{2}{15}=\frac{4}{15} \text { unit }
\end{aligned}
$$

こL. $1,3 y y=f(x)=x^{3}-3 x^{2}+2 x$ alla

$$
f(x)=0 \rightarrow x^{3}-3 x^{2}+2 x=0
$$

$$
x\left(x^{2}-3 x+2\right)=0 \rightarrow x(x-2)(x-1)=0
$$

$$
\text { l.t } x=0 \text { or } x=2 \text { or } x=1
$$

$38 / 4$
(4)

$$
\begin{aligned}
& R(x)=\sqrt{x-1}-\frac{1}{2} x
\end{aligned}
$$

$$
\begin{aligned}
& R(x)=0 \rightarrow \sqrt{x-1}-\frac{1}{2} x=0 \rightarrow \sqrt{x-1}=\frac{1}{2} \times \operatorname{li}_{2}=\frac{1}{2} \\
& x-1=\frac{1}{4} x^{2} \text { 4isel } \rightarrow 4 x-4=x^{2} \\
& x^{2}-4 x+4=0 \rightarrow(x-2)^{2}=0 \rightarrow x-2=0 \\
& x=2 \in[2,5] \Rightarrow \text { abotini, بipjo }
\end{aligned}
$$

$$
\begin{aligned}
A & =\left|\int_{2}^{5}\left(\sqrt{x-1}-\frac{1}{2} x\right) d x\right| \\
& =\left|\int_{2}^{5}\left[(x-1)^{\frac{1}{2}}-\frac{1}{2} x\right] d x=\right|\left[\frac{(x-1)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{\frac{1}{2} x^{2}}{2}\right]_{2}^{5} \\
& =\left|\left[\frac{2}{3}(x-1)^{\frac{3}{2}}-\frac{1}{4} x^{2}\right]_{2}^{5}\right| \\
& =\left|\left[\frac{2}{3}(4)^{\frac{3}{2}}-\frac{1}{4}(5)^{2}\right]-\left[\frac{2}{3}(1)^{\frac{3}{2}}-\frac{1}{4}(2)^{2}\right]\right| \\
& =\left|\left[\frac{2}{3}(8)-\frac{25}{4}\right]-\left[\frac{2}{3}-1\right]\right| \\
& =\left|\left[\frac{16}{3}-\frac{25}{4}\right]-\left[\frac{2-3}{3}\right]\right| \\
& =\left|\left[\frac{64-75}{12}\right]-\left[\frac{-1}{3}\right]\right|=\left|\frac{-11}{12}+\frac{1}{3}\right|=\left|\frac{-11+4}{12}\right| \\
& =\left|\frac{-7}{12}\right|=\frac{7}{12} \text { unit }
\end{aligned}
$$

$39 / 4$

$$
y=x^{2}, y=x^{4}-12
$$

$R(x)=x^{4}-12-x^{2}$
$R(x)=0 \Rightarrow x^{4}-x^{2}-12=0$ $\left(x^{2}-4\right)\left(x^{2}+3\right)=0$
Lol $x^{2}-4=0 \rightarrow x^{2}=4 \rightarrow x$
g) $x^{2}+3=0 \rightarrow x^{2}=-3$ tor

$$
x=\mp 2 \rightarrow[-2,2]
$$

$$
\therefore A=\left|\int_{-2}^{2}\left(x^{4}-12-x^{2}\right) d x\right|
$$

$178)$

$$
\begin{aligned}
& =\left|\left[\frac{x^{5}}{5}-12 x-\frac{x^{3}}{3}\right]_{-2}^{2}\right| \\
& =\left|\left[\frac{(2)^{5}}{5}-12(2)-\frac{(2)^{3}}{3}\right]-\left[\frac{(-2)^{5}}{5}-12(-2)-\frac{(-2)^{3}}{3}\right]\right|
\end{aligned}
$$

$$
=\left|\left[\frac{32}{5}-24-\frac{8}{3}\right]-\left[\frac{-32}{5}+24-\frac{-8}{3}\right]\right|
$$

$=\left|\frac{32}{5}-24-\frac{8}{3}+\frac{32}{5}-24-\frac{8}{3}\right|$

$$
=\left|\frac{64}{5}-\frac{16}{3}-48\right|=\left|\frac{192-80-720}{15}\right|
$$

$$
=\left|\frac{-608}{15}\right|=\frac{608}{15} \text { unit}^{2}
$$

（4）$/ 3$

$$
\begin{aligned}
& f(x)=x^{3}(-4+x) \\
& f(x)=-4 x^{3}+x^{4} \rightarrow f^{\prime}(x)=-12 x^{2}+4 x^{3} \\
& -12 x^{2}+4 x^{3}=0 \xrightarrow{\div 4}-3 x^{2}+x^{3}=0 \xrightarrow{\text { 趶 }} x^{2}(-3+x)=0 \\
& x^{2}=0 \rightarrow x=0 \text {, } 1-3+x=0 \rightarrow x=3 \\
& x<00_{0}(0,3) \quad 3 \quad x>3
\end{aligned}
$$

（1）$\{x: x<0\}$ जिएا
（2）$(0,3)$

$$
\begin{aligned}
f(0) & =0(-4+0) \quad \text { 先vegús } \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { صp =dè } \rightarrow(0,0) \quad \therefore \\
& f(3)=(3)^{3}[-4+3]<x=3 \text { Lis } \\
& =27(-1)=-27 \rightarrow(3,-27) \Longrightarrow \frac{1}{2}
\end{aligned}
$$

（7）（ ）كا
三ئِ
اكِ

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+a \rightarrow 3 x^{2}+a=0 \rightarrow 3(1)^{2}+a=0 \\
& 3+a=0 \rightarrow a=-3 \\
& \therefore f(x)=x^{3}-3 x+5 \rightarrow f^{\prime}(x)=3 x^{2}-3=0 \\
& =x^{2}-3-2-x^{2}=2 \rightarrow i-T^{1}
\end{aligned}
$$

روابط شبكة رحـة التفوق

https://telegram.me/A M Z F
https://telegram.me/Sadss6 bot \qquad روبوت رحلة التفوق في السادس
https://telegram.me/Arab R T
https://telegram.me/English R T
 قناة رحلة التفوق فـي السادس قناة التفوق II اللغة المربية قناة التفوق II اللغة الإنكليزية قناة التفوق II الرياضيات علمي قناة التفوق Il الفيزياء قناة التفوق II الاحياء https://telegram.me/Bio R T

https://telegram.me/burhanmath
https://telegram.me/R A I S tg \square قناة التفوق II الادبي http://telegram.me/rafidmob قناة التفوق II رياضيات تطبيقم قناة التفوق II رياضيات ادبي
https://telegram.me/joinchat/Bm5U2z7gQI9bGQR7O1RDlg
قناة التفوق II نصائح وأمل

نعمل لجل عراق أفضل

لا لالمستقبل الفردي والتفيير لجل كسب الهمال لكي تصرف على أهور لا تنفع المجتهع فقط للمنفعة الشخصية

